
Computer
Science

OCR AS and A Level

iv

Contents
Section 1
Components of a computer 1

Chapter 1 Processor components 2

Chapter 2 Processor performance 7

Chapter 3 Types of processor 10

Chapter 4 Input devices 16

Chapter 5 Output devices 20

Chapter 6 Storage devices 25

Section 2
Systems software 29

Chapter 7 Functions of an operating system 30

Chapter 8 Types of operating system 36

Chapter 9 The nature of applications 39

Chapter 10 Programming language translators 44

Section 3
Software development 51

Chapter 11 Systems analysis methods 52

Chapter 12 Writing and following algorithms 57

Chapter 13 Programming paradigms 64

Chapter 14 Assembly language 69

Section 4
Exchanging data 74

Chapter 15 Compression, encryption and hashing 75

Chapter 16 Database concepts 82

Chapter 17 Relational databases and normalisation 88

Chapter 18 Introduction to SQL 95

Chapter 19 Defining and updating tables using SQL 101

Chapter 20 Transaction processing 106

v

Section 5
Networks and web technologies 110

Chapter 21 Structure of the Internet 111

Chapter 22 Internet communication 119

Chapter 23 Network security and threats 126

Chapter 24 HTML and CSS 130

Chapter 25 Web forms and JavaScript 136

Chapter 26 Search engine indexing 142

Chapter 27 Client-server and peer-to-peer 147

Section 6
Data types 154

Chapter 28 Primitive data types, binary and hexadecimal 155

Chapter 29 ASCII and Unicode 159

Chapter 30 Binary arithmetic 162

Chapter 31 Floating point arithmetic 167

Chapter 32 Bitwise manipulation and masks 174

Section 7
Data structures 178

Chapter 33 Arrays, tuples and records 179

Chapter 34 Queues 184

Chapter 35 Lists and linked lists 190

Chapter 36 Stacks 200

Chapter 37 Hash tables 204

Chapter 38 Graphs 209

Chapter 39 Trees 214

vi

Section 8
Boolean algebra 222

Chapter 40 Logic gates and truth tables 223

Chapter 41 Simplifying Boolean expressions 228

Chapter 42 Karnaugh maps 233

Chapter 43 Adders and D-type flip-flops 238

Section 9
Legal, moral, ethical and cultural issues 242

Chapter 44 Computing related legislation 243

Chapter 45 Ethical, moral and cultural issues 249

Chapter 46 Privacy and censorship 255

Section 10
Computational thinking 259

Chapter 47 Thinking abstractly 260

Chapter 48 Thinking ahead 265

Chapter 49 Thinking procedurally 268

Chapter 50 Thinking logically, thinking concurrently 272

Chapter 51 Problem recognition 277

Chapter 52 Problem solving 282

vii

Section 11
Programming techniques 287

Chapter 53 Programming basics 288

Chapter 54 Selection 294

Chapter 55 Iteration 299

Chapter 56 Subroutines and recursion 303

Chapter 57 Use of an IDE 313

Chapter 58 Use of object-oriented techniques 319

Section 12
Algorithms 327

Chapter 59 Analysis and design of algorithms 328

Chapter 60 Searching algorithms 334

Chapter 61 Bubble sort and insertion sort 340

Chapter 62 Merge sort and quick sort 345

Chapter 63 Graph traversal algorithms 351

Chapter 64 Optimisation algorithms 358

Index 364

SECTION 1 – COMPONENTS OF A COMPUTER

16

Chapter 4 – Input devices

Objectives

• Describe different input devices

• Explain how different input devices can be applied as a solution to different problems

Barcodes
Barcodes first started appearing on grocery items in the 1970s, and today they are used for identification
in thousands of applications from tracking parcels, shipping cartons, passenger luggage, blood, tissue
and organ products around the world to the sale of items in shops and the recording of the details
of people attending events. Keeping track of anything accurately is now almost unimaginable
without barcodes.

A handheld barcode scanner used for scanning medical samples

There are two different types of barcode: Linear barcodes such as the one shown above and 2D
barcodes such as the Quick Response (QR) code, which can hold more information than the 1D barcode.

A 2D barcode

2D barcodes are used for example in ticketless entry to concerts, or access through gates to board
a Eurostar train or passenger airline. They are also used in mobile phone apps that enable the user to
take a photo of the code which may then provide them with further information such as a map of their
location, product details or a website URL.

Barcode readers
There are four different barcode readers available, each using a slightly different technology for reading
and decoding a barcode. The four types are pen-type readers, laser scanners, CCD readers and camera-
based readers.

1-4

2-7

SECTION 2 – SYSTEMS SOFTWARE

48

2-10

The statements input(radius)

 area = pi * radius * radius

could be ‘tokenised’ and stored as the lexical string 1 3

 5 4 2 7 3 7 3

Q2: What further entries to the symbol table will the lexical analyser make on encountering the
statement

 circumference = 2 * pi * radius

 Add the entries to the symbol table and then tokenise the statement.

Note that the lexical analyser puts the identifier and its run-time address in the symbol table, so that it
can replace them in the source code by ‘tokens’. It will not fill in the ‘kind of item’ and ‘type of item’; this
is done later by the syntax analyser.

Accessing the symbol table
Since the lexical analyser spends a great proportion of its time looking up the symbol table, this activity
has a crucial effect on the overall speed of the compiler. The symbol table must therefore be organised
in such a way that entries can be found as quickly as possible. The most common way of organising the
symbol table is a hash table, where the keyword or identifier is ‘hashed’ to produce an array subscript.
As with any hash table, synonyms (collisions) are inevitable, and a common way of handling them is to
store the synonym in the next available free space in the table.

Syntax analysis and semantic analysis
Syntax analysis is the process of determining whether the sequence of input characters, symbols, items
or tokens form a valid sentence in the language. In order to do this, the language has to be expressed as
a set of rules, using for example syntax diagrams or Backus-Naur form.

Parsing is the task of systematically applying the set of rules to each statement to determine whether
it is valid. Stacks will be used to check, for example, that brackets are correctly paired. The priorities of
arithmetic operators will be determined, and expressions converted into a form (such as reverse Polish
notation) from which machine code can more easily be generated.

The semantics of the program will also be checked in this phase. Semantics define the meaning rather
than the grammar of the language; it is possible to write a series of syntactically correct statements which
nevertheless do not obey the rules for writing a correct program. An example of a semantic error is the
use of an undeclared variable in Pascal, or trying to assign a real value to an integer variable, or using a
real number instead of an integer as the counter in a for … next loop.

Q3: Give other examples of a semantic error.

Code generation and optimisation
This is the final phase of compilation, when the machine code is generated. Most high-level language
statements will be translated into a number of machine code statements.

Code optimisation techniques attempt to reduce the execution time of the object program by, for
example, spotting redundant instructions and producing object code which achieves the same net

A-Level only

SECTION 4 – EXCHANGING DATA

76

4-15

The compression of sound and video works in a similar way. MP3 files use lossy compression to remove
frequencies too high for most of us to hear and to remove quieter sounds that are played at the same
time as louder sounds. The resulting file is about 10% of original size, meaning that 1 minute of MP3
audio equates to roughly 1MB in size.

Voice is transmitted over the Internet or mobile telephone networks using lossy compression and
although we have no problem in understanding what the other person is saying, we can recognise the
difference in quality of a voice over a phone rather than in person. The apparent difference is lost data.

Lossless compression
Lossless compression works by recording patterns in data rather than the actual data. Using these
patterns and a set of instructions on how to use them, the computer can reverse the procedure and
reassemble an image, sound or text file with exact accuracy and no data is lost. This is most important
with the compression of program files, for example, where a single lost character would result in an error
in the program code. A pixel with a slightly different colour would not be of huge consequence in most
cases. Lossless compression usually results in a much larger file than a lossy file, but one that is still
significantly smaller than the original.

Q1: What type of compression is likely to be used for the following: a website image, a zipped file of
long text documents and images, a PDF instruction manual?

Run Length Encoding (RLE)
If you were ordering food from a takeaway restaurant for a group of five friends, it is likely that you
might ask for “5 pizzas” rather than “one pizza, and another pizza, and another pizza etc.” Run Length
Encoding exploits the same principle. Rather than recording every pixel in a sequence, it records its
value and the number of times it repeats.

For this section of the balloon image, the encoding for the first row might crudely translate to:
6 green, 8 yellow and 17 orange, using one binary value for the colour value and another for the number
of contiguous matching pixels in the run. This would reduce the data necessary to store this row to 6
bytes (00000110 00000001 00001000 00000010 00010001 00000011) rather than 31 bytes assuming a
bit depth of 8 and values for each colour of 00000001, 00000010 and 00000011.

A-Level only

SECTION 5 – NETWORKS AND WEB TECHNOLOGIES

120120

The header (much like the box(es) of a consignment you might send or receive through the post) includes
the sender’s and the recipient’s IP addresses, the protocol being used with this type of packet and the
number of the packet in the sequence being sent, e.g. packet 1 of 8. They also include the Time To Live
(TTL) or hop limit, after which point the data packet expires and is discarded.

Packet 3 of 3 Packet 2 of 3 Packet 1 of 3

Payload
Tr

ai
le

r H
eader

Payload

Tr
ai

le
r H

eader

Payload

Tr
ai

le
r H

eader

Data packets queueing to be sent

Q1: Why is the sender’s IP address included in the packet header?

The payload of the packet contains the actual data being sent. Upon receipt, the packets are
reassembled in the correct order and the data is extracted.

Routing packets across the Internet
The success of packet switching relies on the ability of packets to be sent from sender to recipient along
entirely separate routes from each other. At the moment that a packet leaves the sender’s computer, the
fastest or least congested route is taken to the recipient’s computer. They can be easily reassembled in
the correct order at the receiving end and any packets that don’t make it can be requested again.

1 1

1

1

1

2

2

2

2 2

3

3

3

3

3 3

Router / Node

Packets

Q2: What information is included in the packet header to enable the receiving computer to
reassemble packets in the correct order?

5-215-22

145

CHAPTER 26 – SEARCH ENGINE INDEXING

Example 2 shows the iterative process used to calculate and recalculate the PageRank (PR) of a group of
webpages where the starting point is unknown.

Example 2

As the number of web pages grows, more complex link structures are created. After the addition of
one extra web page, the PageRank is recalculated and adjusted to reflect the new pages and links.

A B

C D

First iteration: (Assumes a PR of 1 for each page where not known.)

d = 0.85

PR(A) = (1 – d) + d(PR(B)/2 + PR(C)/1) PR(A) = 0.15 + 0.85 * (0.5 + 1) = 1.425

PR(B) = (1 – d) + d(PR(A)/1) PR(B) = 0.15 + 0.85 * 1.425 = 1.361

PR(C) = (1 – d) + d(PR(B)/2 + PR(D)/1) PR(C) = 0.15 + 0.85 * (0.681 + 1) = 1.578

PR(D) = (1 – d) + d(0) PR(D) = 0.15

Second iteration: (Uses new PR figures from first iteration.)

d = 0.85

PR(A) = (1 – d) + d(PR(B)/2 + PR(C)/1) PR(A) = 0.15 + 0.85 * (0.681 + 1.578) = 2.07

PR(B) = (1 – d) + d(PR(A)/1) PR(B) = 0.15 + 0.85 * 2.07 = 1.909

PR(C) = (1 – d) + d(PR(B)/2 + PR(D)/1) PR(C) = 0.15 + 0.85 * (0.955 + 0.15) = 1.089

PR(D) = (1 – d) + d(0) PR(D) = 0.15

Third iteration:

d = 0.85

PR(A) = (1 – d) + d(PR(B)/2 + PR(C)/1) PR(A) = 0.15 + 0.85 * (0.955 + 1.089) = 1.887

PR(B) = (1 – d) + d(PR(A)/1) PR(B) = 0.15 + 0.85 * 1.887 = 1.754

PR(C) = (1 – d) + d(PR(B)/2 + PR(D)/1) PR(C) = 0.15 + 0.85 * (0.877 + 0.15) = 1.023

PR(D) = (1 – d) + d(0) PR(D) = 0.15

After three iterations, the PageRank of each page begins to settle. In reality many more iterations
would be necessary before the figures stop moving, but three iterations get us close enough to
understand the process and begin to see some results.

Page A now has a slightly higher ranking than B since it has another vote from page C. Page B has
a higher rank than pages C and D because it has 100% of the votes from A, a high ranking page in
itself. Page C has a comparatively moderate ranking since it has two inbound links from other pages
that also have inbound links. C’s vote from page D however is not given significant importance since
page D has no inbound links and therefore has a low PageRank.

Q5: What factors may result in a web page A’s rank rising or falling over time as it is revised?

A-Level only

A

5-26

SECTION 5 – NETWORKS AND WEB TECHNOLOGIES

146

Exercises
1. The owner of website www.inflatablecastle.com is trying to improve the positioning of his homepage

inflatablecastle.com/index.html in search engine listings.

 (a) Other than PageRank, give three design factors that may affect the company homepage’s
positioning in search results. [3]

 Google’s PageRank algorithm PR(A) = (1-d) + d (PR(T1)/C(T1) + ... + PR(Tn)/C(Tn)) calculates a
ranking for each web page that has a significant bearing on search results.

 (b) With reference to the diagram below, explain which page is likely to have the highest
PageRank. You are not expected to perform any calculations. [2]

A

BC

D

inflatablecastle.com

 (c) Looking at the algorithm, what factors directly influence the PageRank of the homepage
index.html at inflatablecastles.com? [2]

 (d) PageRank uses a damping factor d in its algorithm. Explain the purpose of d. [2]

2. Search engines provide a listing of all web pages with content relevant to a set of search terms.

 (a) Explain how search engines produce this list. [2]

 (b) With reference to the screenshot below, state which line of code contains metatags. [1]

 (c) Briefly explain the purpose of the meta description. [2]

A-Level only

A

5-26

7-33

SECTION 7 – DATA STRUCTURES

192

7-35

Q5: Why not simply leave the array element names[2] blank after deleting Ken?

First, items are moved up to fill the empty space by copying them to the previous spot in the array:

PaulHolly James Nathan Sophie Sophie

Finally the last element, which is now duplicated, is replaced with a blank.

PaulHolly James Nathan Sophie

Linked lists

Definition
A linked list is a dynamic data structure used to hold an ordered sequence, as described below:

• The items which form the sequence are not necessarily held in contiguous data locations, or in the
order in which they occur in the sequence

• Each item in the list is called a node and contains a data field and a next address field called a link
or pointer field (the data field may consist of several subfields.)

• The data field holds the actual data associated with the list item, and the pointer field contains the
address of the next item in the sequence

• The link field in the last item indicates that there are no further items by the use of a null pointer

• Associated with the list is a pointer variable which points to (i.e. contains the address of) the first
node in the list

Operations on linked lists
In the examples which follow we will assume that the linked list is held in memory in an array of records,
and that each node consists of a person’s name (the data field) and a pointer to the next item in the list.

 We will explore how to set up or initialise an empty list, insert new data in the correct place in the list,
delete an unwanted item and print out all items in the list. We will also look at the problem of managing
the free space in the list.

A node record may be defined like this:

type nodeType
 string name
 integer pointer
endType

dim Names[0..5] of nodeType

Initialising a linked list
We need to keep two linked lists; one for the actual data, and one for the free space. When a new item
is added, it is put in the node pointed to by nextfree. When a node is deleted, it is linked into the free
space list.

A-Level only

SECTION 8 – BOOLEAN ALGEBRA

228228

Chapter 41 – Simplifying Boolean expressions

Objectives

• Use the following rules to derive or simplify statements in Boolean algebra:

 o de Morgan’s Laws

 o commutation

 o association

 o distribution

 o absorption

 o double negation

• Write a Boolean expression for a given logic gate circuit, and vice versa

de Morgan’s laws
Augustus de Morgan (1806-1871) was a Cambridge Mathematics professor who formulated two
theorems or laws relating to logic. These laws can be used to manipulate and simplify Boolean
expressions. Although his theoretical work had little practical application in his lifetime, it became of
major significance in the next century in the field of digital electronics, in which TRUE and FALSE can be
replaced by ON and OFF or the binary numbers 0 and 1.

Using de Morgan’s laws, any Boolean function can be converted to one which uses only NAND functions
or only NOR functions, and these can be further converted to an expression using all NAND functions or
all NOR functions.

Thus, any integrated circuit can be built from just one type of logic gate. This is an advantage in
manufacturing where costs can be kept down by using only one type of gate.

de Morgan’s first law

¬(A

^

 B) = ¬A ^ ¬B
The truth of this is clear from the Venn diagram on the right. Suppose we
have a variable X defined by

X = ¬(A

^

 B)
Looking at the Venn diagram, A

^

 B is represented by the white area. Since
X is not in A

^

 B, it consists of all the grey area. This can be defined as
everything not in A and not in B, i.e.

X = ¬A ^ ¬B

Q1: Complete the following truth table to show that ¬(A

^

 B) = ¬A ^ ¬B

A B ¬A ¬B A

^

 B ¬(A

^

 B) ¬A ^ ¬B

0 0

0 1

1 0

1 1

BA
X

^

A

A-Level only

8-41

SECTION 8 – BOOLEAN ALGEBRA

236

Here, the group outlined in green “wraps around” but is still a single group. The expression simplifies to

B

^

 (A ^ ¬C)

Q3: Simplify the same expression as above, (¬ A ^ B)

^

 (B ^ ¬ C)

^

 (B ^ C)

^

 (A ^ ¬ B ^ ¬ C), but
this time use a Karnaugh map with the following headings:

00

AB

C 01 11 10

0

1

The four-variable problem
With four variables, each row or column represents a combination of two variables.

Example 4
Represent the expression A

^

 (A ^ ¬ B ^ C ^ D) in a Karnaugh map, and hence simplify the expression.

00

CD

AB 01 11 10

00

01

11

10

1

1

1

1

1

1

1

1

00

CD

AB 01 11 10

00

01

11

10

1

1

1

1

1

1

1

1

This simplifies to A.

Summary of the Karnaugh map method
1. Construct the Karnaugh map step by step, placing 1s in the squares for each sub-expression

separated by an OR symbol (

^

)

2. Group any octet (8 squares)

3. Group any quad (4 squares that have not already been grouped, making sure to use the minimum
number of groups

4. Group any pair which contains a 1 adjacent to only one other 1 which is not already in a group

5. Group any isolated 1s which are not adjacent to any other 1s.

6. Form the OR sum of all the terms generated by each group.

00

BC

A 01 11 10

0

1 1 1

11

1

8-42

SECTION 10 – COMPUTATIONAL THINKING

262

10-47

Abstraction by generalisation
There is a famous problem dating back more than 200 years to the old Prussian city of Königsberg.
This beautiful city had seven bridges, and the inhabitants liked to stroll around the city on a Sunday
afternoon, making sure to cross every bridge at least once. Nobody could figure out how to cross each
bridge once and once only, or alternatively prove that this was impossible, and eventually the Mayor
turned to the local mathematical genius Leonhard Euler.

The map of 18th century Königsberg

Euler’s first step was to remove all irrelevant details from the map, and come up with an abstraction:

East
island

West
island

North bank

South bank

To really simplify it, Euler represented each piece of land as a circle and each bridge as a line between
them.

West island

North bank

East island

South bank

SECTION 12 – ALGORITHMS

352

12-63

It is easiest to understand how this works by looking at the graphs below. This shows the state of the
stack (here it just shows the current node when a recursive call is made), and the contents of the visited
list. Each visited node is coloured dark blue.

A

Visited

Stack

B

D

E F

C

G
 A

Visited

Stack

B

D

E F

C

G A

1. Start the routine with an empty stack and an empty list
of visited nodes.

2. Visit A, add it to the visited list. Colour it to show it has
been visited.

A

Visited

Stack

B

D

E F

C

G

A

A B A

Visited

Stack

B

D

E F

C

G

B

A

A B C

3. Push A onto the stack to keep track of where we have
come from and visit A’s first neighbour, B. Add it to the
visited list. Colour it to show it has been visited.

4. Push B onto the stack and from B, visit the next
unvisited node, C. Add it to the visited list. Colour it to
show it has been visited.

A

Visited

Stack

B

D

E F

C

G
C

B

A

A B C G A

Visited

Stack

B

D

E F

C

G

B

A

A B C G

5. Push C onto the stack and from C, visit the next
unvisited node, G. Add it to the visited list. Colour it to
show it has been visited.

6. At G, there are no unvisited nodes so we backtrack.
Pop the previous node C off the stack and return to C

 A

Visited

Stack

B

D

E F

C

G

A

A B C G A

Visited

Stack

B

D

E F

C

G

B

A

A B C G D

7. At C, all adjacent nodes have been visited, so
backtrack again. Pop B off the stack and return to B.

8. Push B back onto the stack to keep track of where we
have come from and visit D. Add it to the visited list.
Colour it to show it has been visited.

 A

Visited

Stack

B

D

E F

C

G

D

B

A

A B C G D E A

Visited

Stack

B

D

E F

C

G

B

A

A B C G D E

9. Push D onto the stack and visit E. Add it to the visited
list. Colour it to show it has been visited.

10. From E, A and D have already been visited so pop D
off the stack and return to D.

A

Visited

Stack

B

D

E F

C

G

D

B

A

A B C G D E F A

Visited

Stack

B

D

E F

C

G A B C G D E F

11. Push D back onto the stack and visit F. Add it to the
visited list. Colour it to show it has been visited.

12. At F, there are no unvisited nodes so we pop D, then
B, then A, whose neighbours have all been visited.
The stack is now empty which means every node has
been visited and the algorithm has completed.

A-Level only

361

CHAPTER 64 – OPTIMISATION ALGORITHMS

The queue is empty, all the nodes have now been visited so the algorithm ends.

We have found the shortest distance from A to every other node, and the shortest distance from A is
marked in blue at each node.

Q1: Copy the graph below and use the method above to trace the shortest path from A to all other
 nodes. Write the shortest distance at each node.

DB

CA

11

10

5 54

Q2: Use a similar method to trace the shortest path from A to all other nodes. Write the shortest
distance at each node. What is the shortest distance from A to G?

B

GD

A

6

6

6

3

2

3

7

7

110

4

4

C

F
E

The A* algorithm
Dijkstra’s algorithm is a special case of a more general path-finding algorithm called the A* algorithm.
Dijkstra’s algorithm has one cost function, which is the real cost value (e.g. distance) from the source
node to every other node.

The A* algorithm has two cost functions:

1. g(x) – as with Dijkstra’s algorithm, this is the real cost from the source to a given node.

2. h(x) – this is the approximate cost from node x to the goal node. It is a heuristic function, meaning
that it is a good or adequate solution, but not necessarily the optimum one. This algorithm stipulates
that the heuristic function should never overestimate the cost, therefore the real cost should be
greater than or equal h(x).

The total cost of each node is calculated as f(x) = g(x) + h(x).

The A* algorithm focusses only on reaching the goal node, unlike Dijkstra’s algorithm which finds the
lowest cost or shortest path to every node. It is used, for example, in video games to enable characters
to navigate the world.

A-Level only

A

12-64

INDEX– OCR A LEVEL COMPUTER SCIENCE

364

A
1NF, 89
2NF, 91
3NF, 91
A* algorithm, 361
abstract data type, 184
abstraction, 260

by generalisation, 262
data, 263
problem, 279
procedural, 268

accumulator, 4
ACID, 107
active tag, 19
actuator, 23
adder

full, 238
half, 238

address bus, 2, 3, 8
addressing modes, 72
adjacency

list, 210
matrix, 210

ADT, 184
agile modelling, 55
algorithm, 57, 288

recursive, 337
algorithms

and ethics, 252
comparing, 328
sorting, 340

alpha testing, 53
ALU, 4
Amazon, 249
analysing personal

information, 245
analysis, 52
AND, 176, 296
AND gate, 224
API, 152
application layer, 122
application software, 41
arithmetic

operations, 289
shift instructions, 174

Arithmetic-Logic Unit, 2, 4
array, 186

1-dimensional, 179
2-dimensional, 181

n-dimensional, 181
artificial intelligence, 253
ASCII code, 160
assembler, 44, 69
assembly language, 9, 69
attributes, 319
automated decision making, 252
automatic

backup, 40
updating, 40

automation, 280

B
backtracking, 283
barcode

2D, 16
linear, 16
reader, 16

base case, 307
behaviours, 319
beta testing, 53
Big-O notation, 330
binary

addition, 162
fixed point, 165, 167
floating point, 167
number system, 155
search tree, 215, 218, 338
subtraction, 164

binary search, 335
recursive algorithm, 337

BIOS, 38
bit, 159
bitwise manipulation, 174
black box testing, 53
block-structured languages, 272
Blu-Ray disk, 26
Boolean algebra rules, 229
Boolean operators, 296
branch instruction, 70
breadth-first

search, 212, 356
traversal, 353, 354

bubble sort, 340
bus, 2

address, 2, 3, 8
control, 3
data, 2, 3
system, 2

byte, 159
bytecode, 46

C
cache memory, 7
caching, 267
Caesar cipher, 77
call stack, 202, 309
camera-based reader, 18
Captcha, 138
capturing data, 106
Cascade Style Sheets, 130
case statement, 296
CD-ROM, 26
censorship, 255
Central Processing Unit, 2
character set, 159, 258
CIR, 4
circuit switching, 119
circular

queue, 186
shift instructions, 175

CISC, 12
class, 320
client-server networking, 147
client-side processing, 150
clock speed, 7
closed source, 42
cloud computing, 148
code

generation, 48
optimisation, 48

collision, 204
resolution, 206

colour paradigms, 257
comments, 289
commitment ordering, 109
compiler, 44, 46
composite key, 84
compression, 75

dictionary-based, 77
lossless, 76
lossy, 75

computable problems, 277
computational thinking, 260
Computer Misuse Act 1990, 244
computers in the workforce, 250
concurrent processing, 275
constants, 292

Index

Index

INDEX– OCR A LEVEL COMPUTER SCIENCE

365

constructor, 67, 321
control bus, 3
Control Unit, 2
co-processor, 13
Copyright Designs and Patents Act

1988, 244
core, 7, 13
CPU, 2

multi-core, 13
cryptographic hash functions, 80
CSS, 130, 131

script, 134
current instruction register, 4
cyber-bullying, 255

D
D-type flip-flop, 239
data

abstraction, 184
bus, 2, 3, 9
capture, 106
exchange, 107
mining, 284
redundancy, 92
select and manage, 107
types, 289

Data Protection Act 1998, 244
database

locking, 108
normalisation, 89
relational, 88

de Morgan’s laws, 228
decomposition, 269
DeepMind AlphaGo, 14
degree of a relationship, 83
denary, 155
depth-first

search, 355
traversal, 351

design, 52
device driver, 38
dictionary, 207
digital

camera, 18
certificate, 81
signature, 80

digraph, 209
Dijkstra’s algorithm, 358
direct addressing, 72

directed graph, 209
disk defragmenter, 40
divide and conquer, 58, 279
DNS, 113
domain name, 113

system (DNS), 113
driverless cars, 252
dry run, 317
dual-core, 7
DVD-RW, 26
dynamic data structure, 182, 186

E
eBay, 249
embedded systems, 11
encapsulation, 184, 306, 322
encryption, 77

asymmetric, 79
private key, 79
public key, 79
symmetric, 79

entity, 82
Entity Relationship Diagram, 83
enumeration, 277
environmental issues, 253
evaluation, 53
exhaustive search, 277
extreme programming, 55

F
Fetch-Decode-Execute cycle, 5
FIFO, 184
File Transfer Protocol, 124
firewall, 126
First In First Out, 184
first normal form, 89
fixed point binary, 165
flat file database, 82
floating point

addition and subtraction, 171
binary, 167

folding method, 205
for … next, 301
foreign key, 84, 89
freeware, 42
FTP, 124
function

exponential, 329
linear, 329

logarithmic, 330
polynomial, 329

functional testing, 53
functions, 291, 303

string-handling, 291

G
gateway, 121
getter messages, 321
Google, 249
GPU, 13
graph, 209

traversals, 351
graphics processing unit, 13

H
hard disk, 25
Harvard architecture, 11
hash table, 204
hashing, 80
hashing algorithm, 204

folding method, 205
heuristic methods, 285
hexadecimal number system,

156, 157
hierarchy chart, 269
HTML, 130

form script, 138
script, 133
tags, 130

HyperText Markup Language, 130

I
IDE, 313
if … then … else, 294
immediate addressing, 72
indexed addressing, 72
indexing, 88
indirect addressing, 72
information hiding, 320, 323
inheritance, 65, 323
in-order traversal, 217, 219
installation53
instantiation, 321
Integrated Development Environment,

313
Internet, 111

registrars, 112
registries, 112

Index

INDEX– OCR A LEVEL COMPUTER SCIENCE

366

interpreter, 45, 46
interrupt, 32

service routine, 32
intractable problems, 284
IP address, 114
iteration, 299

J
JavaScript, 137

arrays, 141
code, 139

K
Karnaugh map, 233
kibibyte, 159

L
LAN, 114
laser scanner, 17
layout, 257
LCD monitor, 20
legislation, computing related, 243
lexical analysis, 47
library programs, 49
linear search, 334
link layer, 123
linked list, 192

deleting an item, 197
free space, 192
inserting an item, 193

linker, 49
linking database tables, 89
list, 190
Little Man Computer, 69
loader, 30
local area network, 114
locking, 108
logic gates, 223
logical shift instructions, 174
low-level language, 44

M
MAC address, 121
machine code, 69

instruction, 9, 72
mail server, 125
Many-to-Many relationship, 91
MAR, 4
masks, 176

MDR, 4
mebibyte, 159
Media Access Control address, 121
memory

address register, 4
buffer register, 4
data register, 4
management, 31

merge sort, 345
space complexity, 347
time complexity, 347

mesh network, 117
meta tags, 142
modular programming, 307
monitor, 20
monitoring behaviour, 257
multi-core CPU, 13
multimedia projector, 22
multi-tasking, 32

N
nested loops, 301
network layer, 123
normalisation

of a binary number, 169
of databases, 89

NOT, 176, 296, 297
NOT gate, 223
number bases, 155

O
object, 319
object code, 44
object-oriented programming, 319
offensive communications, 255
OLED, 20
opcode, 9
open source
software, 42
operand, 9
operating system, 30, 39

distributed, 35
embedded, 37
mobile phone, 36
multi-tasking, 35
multi-user, 36
real-time, 36

optical disk, 26
optimisation problems, 358

OR, 176, 296
OR gate, 224
output devices, 20
overflow, 162, 173
overriding, 324

P
packet

filtering, 126
switching, 119

PageRank, 144, 249
algorithm, 143

paging, 31
parallel

processing, 275
systems, 13

partial dependency, 91
passing parameters

by reference, 305
by value, 305

passive tag, 19
path-finding algorithm, 361
PC, 4
peer-to-peer network, 148
pen-type reader, 17
performance modelling, 286
permutations, 330
pipelining, 8, 286
piracy, 149
polymorphism, 67, 324
POP3, 125
Post Office Protocol (v3), 125
post-order traversal, 217, 220
preconditions, 266
pre-order traversal, 216, 220
primary key, 83
primitive data type, 155
printer

3-D, 22
dot matrix, 22
impact, 22
inkjet, 22
laser, 21

priority queue, 188
problem solving, 277
procedural

abstraction, 268
programming, 319

procedures, 303

Index

INDEX– OCR A LEVEL COMPUTER SCIENCE

367

program
constructs, 294
counter, 4

programming language
declarative, 64
functional, 64
object-oriented, 64, 65
procedural, 64

programming paradigm, 64
proprietary software, 42
protocol, 122, 126, 152, 249

stack, 81, 122
proxy server, 127
pseudocode, 288

Q
quad-core, 7
queue, 184

operations, 185

R
RAD, 56
Radio Frequency Identification, 19
RAM, 25, 28
random access memory, 25, 28
rapid application development, 56
read-only memory, 28
record data structure, 182
recursion, 307
reference variable, 321
referential integrity, 85
register, 4
Regulation of Investigatory Powers

Act 2000, 245
rehashing, 206
relation, 88
relational operators, 294
repeat … until, 300
resource management, 39
reusable program components, 266
RFID, 19
RISC, 12
RLE, 76
ROM, 28
root node, 214
rooted tree, 214
router, 121
Run Length Encoding, 76

S
scheduler, 32
scheduling algorithms, 33

first come first served, 33
multi-level feedback queue, 33
round robin, 33
shortest job first, 33
shortest remaining time, 33

search engine indexing, 142
searching algorithms, 334
second normal form, 91
secondary

key, 83
storage, 25

segmentation, 31
selection statement, 294
serialisation, 108
server-side processing, 151
setter messages, 321
shift instructions, 174
sign and magnitude, 163
simulation, 184, 278
software, 41

application, 41
bespoke, 41
development, 52
freeware, 42
off-the-shelf, 41
open source, 42
proprietary, 42
system, 39
utility, 40

solid state disk, 27
sorting algorithms, 340

bubble sort, 340
insertion sort, 343
merge sort, 345
quick sort, 347

source code, 44
space complexity, 347
speaker, 23
spiral model, 54
SQL, 95

ALTER TABLE, 102
DELETE, 104
INSERT INTO, 103
JOIN, 98
ORDER BY, 97
SELECT .. FROM .. WHERE, 95

UPDATE, 104
SSD, 27
stack, 200

call, 202
frame, 203
overflow, 202
underflow, 202

state, 319
static data structure, 186
static filtering, 126
stored program concept, 10
string conversion, 291
structural testing, 53
structured approach, 272
Structured Query Language, 95
subclass, 323
subroutines, 303

advantages of using, 307
user-written, 304

superclass, 323
switch/case statement, 296
symbol table, 47
synonym, 204
syntax analysis, 48
system

bus, 2
clock, 7
vulnerabilities, 129

T
TCP/IP protocol stack, 122
test

plan, 315
strategies, 315

testing
alpha, 53
beta, 53
black box, 53
functional, 53
structural, 53
white box, 53

thick-client, 152
thin-client, 152
third normal form, 91
time complexity, 285, 328, 331, 334,

336
of merge sort, 347

timestamp ordering, 109
topology

Index

INDEX– OCR A LEVEL COMPUTER SCIENCE

368

physical bus, 115
physical star, 115

trace table, 60, 272, 299
transaction processing, 107
transport layer, 123
traversing a binary tree, 216
tree, 214

child, 214
edge, 214
leaf node, 214
node, 214
parent, 214
root, 214
subtree, 214
traversal algorithms, 219

Trojan, 127, 128
trolls, 255
truth tables, 223
tuple, 182
two’s complement, 163

U
underflow, 173
undirected graph, 209
Unicode, 161
Uniform Resource Locator, 112
unit nomenclature, 159
URL, 112
user interface, 39
utility software, 40

V
variables, 292

global, 306
local, 306

Vernam cipher, 78
virtual machine, 38
virtual memory, 28, 31
virus, 127
virus checker, 40
visualisation, 282
von Neumann architecture, 10

W
WAN, 114
WAP, 117
waterfall model, 54
wearable technology, 21
web forms, 136

web server, 150
while … endwhile, 299
white box testing, 53
wide area network, 114
Wi-Fi, 116
WinZip, 41
Wireless Access Point, 117
word, 3

size, 8
World Wide Web, 111
worm, 127

X
XOR, 176, 297

gate, 224

Y
Yobi, 159
Yotta, 159

Z
Zebi, 159
Zetta, 159

Index

The aim of this book is to
provide detailed coverage of
the topics in the new OCR
AS and A Level Computer
Science specifications H046
and H446. It is presented in
an accessible and interesting
way, with many in-text
questions to test students’
understanding of the material
and their ability to apply it.

The book is divided into
twelve sections and within
each section, each chapter
covers material that can
comfortably be taught in
one or two lessons. Material
that is applicable only to the
second year of the full A Level
is clearly marked. Sometimes
this may include an entire
chapter and at other times,
just a small part of a chapter.

Each chapter contains
exercises and questions, some
new and some from past
examination questions.
Answers to all these are
available to teachers only in
a free Teacher’s Supplement
which can be ordered from
our website
www.pgonline.co.uk

About the authors
Pat Heathcote is a well-
known and successful
author of Computer Science
textbooks. She has spent
many years as a teacher of
A Level Computing courses
with significant examining
experience. She has also
worked as a programmer
and systems analyst, and was
Managing Director of Payne-
Gallway Publishers until 2005.

Rob Heathcote has many
years of experience teaching
Computer Science and is
the author of several popular
textbooks on Computing. He
is now Managing Director of
PG Online, and writes and
edits a substantial number of
the online teaching materials
published by the company.

Computer
Science

OCR AS and A Level

Cover picture:

‘Away Day’
Mixed media on canvas, 61x61cm
© Hilary Turnbull
www.hilaryturnbull.co.uk

This book has been
endorsed by OCR.

ISBN: 978-1-910523-05-6

	Front cover
	Contents
	Section 1
	Section 2
	Section 3
	Section 4
	Section 5
	Section 6
	Section 7
	Section 8
	Section 9
	Section 10
	Section 11
	Section 12
	Index

