

iv

Contents

Section 1
Fundamentals of programming 1

Chapter 1 Programming basics 2

Chapter 2 Selection 8

Chapter 3 Iteration 13

Chapter 4 Arrays 17

Chapter 5 Subroutines 21

Chapter 6 Files and exception handling 29

Section 2
Problem solving and theory of computation 33

Chapter 7 Solving logic problems 34

Chapter 8 Structured programming 39

Chapter 9 Writing and interpreting algorithms 42

Chapter 10 Testing and evaluation 48

Chapter 11 Abstraction and automation 52

Chapter 12 Finite state machines 60

Section 3
Data representation 67

Chapter 13 Number systems 68

Chapter 14 Bits, bytes and binary 72

Chapter 15 Binary arithmetic and the representation of fractions 77

Chapter 16 Bitmapped graphics 83

Chapter 17 Digital representation of sound 88

Chapter 18 Data compression and encryption algorithms 93

v

Section 4
Hardware and software 99

Chapter 19 Hardware and software 100

Chapter 20 Role of an operating system 103

Chapter 21 Programming language classification 106

Chapter 22 Programming language translators 110

Chapter 23 Logic gates 114

Chapter 24 Boolean algebra 118

Section 5
Computer organisation and architecture 125

Chapter 25 Internal computer hardware 126

Chapter 26 The processor 132

Chapter 27 The processor instruction set 138

Chapter 28 Assembly language 142

Chapter 29 Input-output devices 148

Chapter 30 Secondary storage devices 154

Section 6
Communication: technology and consequences 158

Chapter 31 Communication methods 159

Chapter 32 Network topology 164

Chapter 33 Client-server and peer-to-peer 168

Chapter 34 Wireless networking, CSMA and SSID 171

Chapter 35 Communication and privacy 176

Chapter 36 The challenges of the digital age 179

vi

Section 7
Data structures 187

Chapter 37 Queues 188

Chapter 38 Lists 194

Chapter 39 Stacks 198

Chapter 40 Hash tables and dictionaries 202

Chapter 41 Graphs 207

Chapter 42 Trees 211

Chapter 43 Vectors 217

Section 8
Algorithms 223

Chapter 44 Recursive algorithms 224

Chapter 45 Big-O notation 229

Chapter 46 Searching and sorting 235

Chapter 47 Graph-traversal algorithms 243

Chapter 48 Optimisation algorithms 249

Chapter 49 Limits of computation 254

Section 9
Regular languages 259

Chapter 50 Mealy machines 260

Chapter 51 Sets 265

Chapter 52 Regular expressions 269

Chapter 53 The Turing machine 273

Chapter 54 Backus-Naur Form 278

Chapter 55 Reverse Polish notation 283

vii

Section 10
The Internet 287

Chapter 56 Structure of the Internet 288

Chapter 57 Packet switching and routers 292

Chapter 58 Internet security 294

Chapter 59 TCP/IP, standard application layer protocols 300

Chapter 60 IP addresses 307

Chapter 61 Client server model 313

Section 11
Databases and software development 318

Chapter 62 Entity relationship modelling 319

Chapter 63 Relational databases and normalisation 323

Chapter 64 Introduction to SQL 330

Chapter 65 Defining and updating tables using SQL 336

Chapter 66 Systematic approach to problem solving 342

Section 12
OOP and functional programming 346

Chapter 67 Basic concepts of object-oriented programming 347

Chapter 68 Object-oriented design principles 353

Chapter 69 Functional programming 360

Chapter 70 Function application 367

Chapter 71 Lists in functional programming 371

Chapter 72 Big Data 374

References 379

Appendices and Index

Appendix A Floating point form 380

Appendix B Adders and D-type flip-flops 387

Index 391

2

SECTION 1 – FUNDAMENTALS OF PROGRAMMING

Chapter 1 – Programming basics

Objectives
• Define what is meant by an algorithm and pseudocode

• Learn how and when different data types are used

• Learn the basic arithmetic operations available in a typical programming language

• Become familiar with basic string handling operations

• Distinguish between variables and constants

What is an algorithm?
An algorithm is a set of rules or a sequence of steps specifying how to solve a problem. A recipe for
chocolate cake, a knitting pattern for a sweater or a set of directions to get from A to B, are all
algorithms of a kind. Each of them has input, processing and output. We will be looking in more
detail at properties of algorithms in Section 2 of this book.

Q1: What are the inputs and outputs in a recipe, a knitting pattern and a set of directions?

Ingredients Method

100g plain flour

2 eggs

300ml milk

1tbsp oil

Pinch salt

Put flour and salt into a large mixing
bowl and make a well in the centre.

Crack the eggs into the middle.

Pour in about 50ml milk and the oil.

Start whisking from the centre,
gradually drawing the flour into the
eggs, milk and oil, etc.

In the context of programming, the series of steps has to be written in such a way that it can be
translated into program code which is then translated into machine code and executed by the computer.

Using pseudocode
Whatever programming language you are using in your practical work, as your programs get more
complicated you will need some way of working out what the steps are before you sit down at the
computer to type in the program code. A useful tool for developing algorithms is pseudocode, which is
a sort of halfway house between English and program statements. There are no concrete rules or syntax
for how pseudocode has to be written, and there are different ways of writing most statements. We will
use a standard way of writing pseudocode that translates easily into a programming language such as
Python, Pascal or whatever procedural language you are learning.

This book does not teach you how to program in any particular programming language – you will learn
how to write programs in your practical sessions – but it will help you to understand and develop your
own algorithms to solve problems.

1-1

SECTION 2 – PROBLEM SOLVING AND THEORY OF COMPUTATION

36

Example 3 is a classic logic problem, which has many different variations on the same theme.

Q3: A man has to get a fox, a chicken, and a sack
of corn across a river.

 He has a rowing boat, which can carry only him
and one other thing.

 If the fox and the chicken are left together,
the fox will eat the chicken.

 If the chicken and the corn are left together,
the chicken will eat the corn.

 How does the man do it?

Strategies for problem solving
There are some general strategies for designing algorithms which are useful for solving many problems
in computer science. First of all it is useful to note that there are two types of algorithmic puzzle.
Every puzzle has an input, which defines an instance of the puzzle. The instance can be either specific
(e.g. fill a magic square with 3 rows and 3 columns), or general (n rows and n columns). Even when
given a general instance of a problem, it is often helpful to solve a specific instance of it, which may
give an insight into solving a more general case.

Exhaustive search
For example, suppose you are asked to fill a ‘magic square’ with 3 rows and 3 columns with distinct
integers 1-9 so that the sum of the numbers in each row, column and corner-to-corner diagonal is
the same.

This is a specific instance of a more general problem in which there are n rows and n columns. Some
problems can be solved by exhaustive search – in this example, by trying every possible combination of
numbers. We can put any one of 9 integers in the first square, and any of the remaining 8 in the second
square, giving 9x8 = 72 possibilities for just the first two squares. There are 9x8x7x6x5x4x3x2 = 362,880
ways of filling the square. If you are a mathematician you will know that this is denoted by 9!, spoken as
“nine factorial”.

You might think a computer could do this in a fraction of a second. However, looking at the more general
problem, where you have n x n squares, you will find that even for a 5 x 5 square, there are so many
different combinations (25! or 25 factorial) that it would take a computer performing 10 trillion operations
a second, about 49,000 years to find the answer!

So, to solve this problem we need to come up with a better algorithm. It turns out to be not very difficult
to work out that for a 3 x 3 square, each row, column and diagonal must add up to 15 and the middle
number must be 5, which considerably reduces the size of the problem. (The details of the algorithm are
not discussed here.)

Q4: Fill the magic square to solve the problem.

2-7

SECTION 2 – PROBLEM SOLVING AND THEORY OF COMPUTATION

64

Exercises
1. Figure 2 shows the state transition diagram of a finite state machine (FSM) used to control a

vending machine.

 The vending machine dispenses a drink when a customer has inserted exactly 50 pence.

 A transaction is cancelled and coins returned to the customer if more than 50 pence is inserted
or the reject button (R) is pressed. The vending machine accepts 10, 20 and 50 pence coins.
Only one type of drink is available.

 The only acceptable inputs for the FSM are 10, 20, 50 and R.

50

R

20

10

10

10 10

10

20

20

20R, 50

R, 20, 50

R, 50

R, 50

S0 S50

S20

S10

S30

S40

Figure 2

 An FSM can be represented as a state transition diagram or as a state transition table. Table 2 is an
incomplete state transition table for part of Figure 2.

 (a) Complete the missing sections of the four rows of Table 2.

Original state Input New state

S0 10 S10

S0

S0

S0

 Table 2 [3]

 There are different ways that a customer can provide exactly three inputs that will result in the
 vending machine dispensing a drink. Three possible permutations are “20, 10, 20”, “10, R, 50” and
 “10, 50, 50”.

 (b) List four other possible permutations of exactly three inputs that will be accepted by the FSM
 shown in Figure 2. [4]
 AQA Comp1 Qu 4 June 2012

2-12

SECTION 3 – DATA REPRESENTATION

88

Chapter 17 – Digital representation of sound

Objectives
• Describe the digital representation of sound in terms of sampling rate and resolution

• Describe the principles of operation of an analogue to digital converter and a digital
to analogue converter

• Understand and apply the Nyquist theorem

• Calculate sound sample sizes in bytes

• Describe the purpose of MIDI and the use of event messages

• Describe the advantages of using MIDI files for representing music

Sound sampling and resolution
Sound waves are naturally in a continuous, analogue form. To represent sound in a computer, the
(continuous) analogue sound waves have to be converted to a (discrete) digital format. This can
be done by measuring and recording the amplitude of the sound wave at given time intervals (several
thousand times per second). The more frequently the samples are taken, the more accurately the sound
will be represented. The frequency at which samples are taken is measured in hertz (Hz), a unit of
frequency equal to one cycle per second.

In addition, in the same way that an image’s quality is improved with a more precise representation of
colour enabled by a greater colour depth, the accuracy of a sound recording increases with a greater
audio bit depth. Increasing the number of points of amplitude (represented on the y axis below) increases
the accuracy at which you can record a sound’s amplitude (or wave height) at a given point in time.

10 2 310

2

3

1

0

2 3
Time (Seconds) Time (Seconds)

A
m

p
lit

u
d

e
(U

si
n

g
 2

-b
it

sa
m

p
le

 r
es

o
lu

tio
n

)

A
m

p
lit

u
d

e
(U

si
n

g
 4

-b
it

sa
m

p
le

 r
es

o
lu

tio
n

)

7
8
9

10

6
5
4
3
2
1

15
14
13
12
11

0

Q1: Which of the graphs above represents a more accurate recording? Why?

Sample rate
The sampling rate is the frequency with which you record the amplitude of the sound. The more often
you take a sample, the smoother the playback will sound. The disadvantage of this, is that every time
you take a sample, at a resolution of say 16 bits, you need to store another 2 bytes of data. A typical CD
recording is made at 44,100Hz, or 44,100 times per second. This means that for every second of sound,
2 bytes x 44,100 = 88,200 / 1000 = 88.2KB is required and for every minute, approximately 5.3MB is
required. For stereo sound, this is doubled to provide samples for left and right channels.

3-17

SECTION 6 – COMMUNICATION: TECHNOLOGY AND CONSEQUENCES

172

6-34

Securing a wireless network
Wi-Fi Protected Access (WPA) and Wi-Fi Protected Access II
(WPA2), which has replaced it, are two security protocols and security
certification programs used to secure wireless networks. WPA2 is built
into wireless network interface cards, and provides strong encryption
of data transmissions, with a new 128-bit key being generated for each
packet sent.

Each wireless network has a Service Set Identification (SSID) which is
the informal name of the local network – for example, HOME-53C1.
The purpose of the SSID is to identify the network, and if, for example,
you visit someone else’s house with a laptop and wish to connect to
their Wi-Fi network in order to use the Internet, when you try to log on to
the Internet the computer will ask you to enter the name of the network.

Your computer may be within the range of several networks, so having
chosen the correct SSID you will then be asked for the password or
security key - an identifier of up to 32 bytes, usually a human-readable
string. SSIDs must be locally unique.

It is possible to disable the broadcast of your SSID to hide your network
from others looking to connect to a named local network. However, this
will not hide your network completely.

Whitelists
Some network administrators set up MAC address whitelists (the opposite of blacklists) to control who
is allowed on their networks. (The MAC address is a unique identifier assigned to a network interface card
by the manufacturer: see page 167.)

Q1: Research some of the applications of “location-based services” such as Presence Orb.
What are some of the benefits and some of the drawbacks to individuals of tracking software?

Arriva’s Bus App

ChapTEr 41 – GRAPHS

207

Chapter 41 – Graphs

Objectives

• Be aware of a graph as a data structure used to represent complex relationships

• Be familiar with typical uses for graphs

• Be able to explain the terms: graph, weighted graph, vertex/node, edge/arc, undirected graph,
directed graph

• Know how an adjacency matrix and an adjacency list may be used to represent a graph

• Be able to compare the use of adjacency matrices and adjacency lists

Definition of a graph
A graph is a set of vertices or nodes connected by edges or arcs. The edges may be one-way or
two way. In an undirected graph, all edges are bidirectional. If the edges in a graph are all one-way, the
graph is said to be a directed graph or digraph.

Bury St Edmunds

57

10

931 56

15
21

45

25

Framlingham

Wickham Market

WoodbridgeIpswich

Stowmarket

Figure 41.1: An undirected graph with weighted edges

The edges may be weighted to show there is a cost to go from one vertex to another as in Figure 41.1.
The weights in this example represent distances between towns. A human driver can find their way
from one town to another by following a map, but a computer needs to represent the information about
distances and connections in a structured, numerical representation.

A

B

C

F

D

E

Figure 41.2: A directed, unweighted graph

7-41

SECTION 8 – ALGORITHMS

244

It is easiest to understand how this works by looking at the graphs below. This shows the state of the
stack (here it just shows the current node when a recursive call is made), and the contents of the visited
list. Each visited node is coloured dark blue.

A

Visited

Stack

B

D

E F

C

G
 A

Visited

Stack

B

D

E F

C

G A

1. Start the routine with an empty stack and an
empty list of visited nodes.

2. Visit A, add it to the visited list. Colour it to show it
has been visited.

A

Visited

Stack

B

D

E F

C

G

A

A B A

Visited

Stack

B

D

E F

C

G

B

A

A B C

3. Push A onto the stack to keep track of where we
have come from and visit A’s first neighbour, B.
Add it to the visited list. Colour it to show it has
been visited.

4. Push B onto the stack and from B, visit the next
unvisited node, C. Add it to the visited list. Colour
it to show it has been visited.

A

Visited

Stack

B

D

E F

C

G

C

B

A

A B C G A

Visited

Stack

B

D

E F

C

G

B

A

A B C G

5. Push C onto the stack and from C, visit the next
unvisited node, G. Add it to the visited list. Colour
it to show it has been visited.

6. At G, there are no unvisited nodes so we
backtrack. Pop the previous node C off the stack
and return to C

 A

Visited

Stack

B

D

E F

C

G

A

A B C G A

Visited

Stack

B

D

E F

C

G

B

A

A B C G D

7. At C, all adjacent nodes have been visited, so
backtrack again. Pop B off the stack and return to B.

8. Push B back onto the stack to keep track of where
we have come from and visit D. Add it to the
visited list. Colour it to show it has been visited.

 A

Visited

Stack

B

D

E F

C

G

D

B

A

A B C G D E A

Visited

Stack

B

D

E F

C

G

B

A

A B C G D E

9. Push D onto the stack and visit E. Add it to the
visited list. Colour it to show it has been visited.

10. From E, A and D have already been visited so pop
D off the stack and return to D.

A

Visited

Stack

B

D

E F

C

G

D

B

A

A B C G D E F A

Visited

Stack

B

D

E F

C

G A B C G D E F

11. Push D back onto the stack and visit F. Add it
to the visited list. Colour it to show it has been
visited.

12. At F, there are no unvisited nodes so we pop D, then
B, then A, whose neighbours have all been visited.
The stack is now empty which means every node
has been visited and the algorithm has completed.

8-47

SECTION 9 – REGULAR LANGUAGES

270

Regular language
A language is called regular if it can be represented by a regular expression. A regular language can also
be defined as any language that a finite state machine will accept. Any finite language (one containing
only a finite number of words) is a regular language, since a regular expression can be created that is the
union of every word in the language.

Example 1
A regular language consists of all words beginning and ending in a, with zero or more instances of b in
between, e.g. aa, aba, abba, abbba.

Write a regular expression that describes this language, and draw the corresponding finite state machine (FSM).

Answer: R = ab*a. Note that the FSM is drawn with an outgoing transition from every state for every
possible input symbol.

b

a,b
a,b

b

b

a

aa

S1

S4

S2

S3

S0

Example 2
Describe the set of strings found by 0+1+0 and draw the FSM.

Answer: It would find all strings with one or more zeros followed by one or more ones followed by one
zero. e.g. 010, 0010, 00010, 0010, 00110

0 0

0,1

1

1

0 1

S0

S1 S2

S3

S4
0,1

Q1: Write a regular expression to find all the occurrences of “color” or “colour” in a document.

Q2: Write a regular expression that matches any non-empty string that starts with zero or more “a”s,
followed by one or more “b”s.

Q3: Which of the following strings is matched by the regular expression Sc(o+)(b|d)*y?

 Scooby Scoby Scddy Scobby Scoobdbdbdy

Draw an FSM that recognises the same language.

9-52

ChapTEr 53 – THE TURING MAcHINE

273

Chapter 53 – The Turing machine

Objectives
•	 Know that a Turing machine can be viewed as a computer with a single fixed program, expressed using

o a finite set of states in a state transition diagram

o a finite alphabet of symbols

o an infinite tape with marked off squares

o a sensing read-write head that can travel along the tape, one square at a time

•	 Understand the equivalence between a transition function and a state transition diagram

•	 Be able to:

o represent transition rules using a transition function

o represent transition rules using a state transition diagram

o hand-trace simple Turing machines

•	 Explain the importance of Turing machines and the Universal Turing machine to the subject of
computation

Alan Turing
Alan Turing (1912–1954) was a British computer scientist and mathematician,
best known for his work at Bletchley Park during the Second World War.
While working there, he devised an early computer for breaking German
ciphers, work which probably shortened the war by two or more years and
saved countless lives.

Turing was interested in the question of computability, and the answer
to the question “Is every mathematical task computable?” In 1936 he
invented a theoretical machine, which became known as the Turing
machine, to answer this question.

The Turing machine
The Turing machine consists of an infinitely long strip of tape divided into squares. It has a read/write
head that can read symbols from the tape and make decisions about what to do based on the contents
of the cell and its current state.

Essentially, this is a finite state machine with the addition of an infinite memory on tape. The FSM
specifies the task to be performed; it can erase or write a different symbol in the current cell, and it can
move the read/write head either left or right.

State S1

1 0 1 0 0 0 0 1 □ □1 1

Read / Write head

Infinite tape

The Turing machine is an early precursor of the modern computer, with input, output and a program
which describes its behaviour. Any alphabet may be defined for the Turing machine; for example a binary
alphabet of 0, 1 and □ (representing a blank), as shown in the diagram above.

9-53

ChapTEr 60 – IP ADDRESSES

309

A computer sending data across a network will use a subnet mask and the destination IP address to
determine from the network ID whether or not the destination computer is on the same subnetwork. This
is done by performing the same AND operation between the computer’s own IP address and the subnet
mask; if the two network IDs produced are the same then the computers are on the same network so
data can be sent directly between them. Otherwise the sending computer must send the data to a router
for forwarding to the network that the destination computer is on.

12
8

64 32 16 8 4 2 1 12
8

64 32 16 8 4 2 1 12
8

64 32 16 8 4 2 1 12
8

64 32 16 8 4 2 1

140 . 24 . 112 . 57

IP Address: 1 0 0 0 1 1 0 0 . 0 0 0 1 1 0 0 0 . 0 1 1 1 0 0 0 0 . 0 0 1 1 1 0 0 1
Subnet mask: 1 1 1 1 1 1 1 1 . 1 1 1 1 1 1 1 1 . 1 1 1 1 1 1 1 1 . 0 0 0 0 0 0 0 0
Network ID: 1 0 0 0 1 1 0 0 . 0 0 0 1 1 0 0 0 . 0 1 1 1 0 0 0 0 . 0 0 0 0 0 0 0 0

Subnetting
A network administrator of a large organisation using an IP address with a 16-bit network ID may wish to
create subnetwork segments within their own larger IP network in order to ease management and improve
efficiency by routing data through one segment only. Using a bus network, this would allow two computers in
subnetwork A to communicate at the same time as two computers in subnetwork B avoiding any collisions.
Subnetting reduces the size of the broadcast domain which can improve security, speed and reliability.

A subnet ID is created by using the most significant bits from the host ID section of the IP addresses.
In the example below, the eight most significant bits of the 16-bit host ID have been used as a subnet ID
leaving 8 bits or 254 (28 = 254-2 to exclude all-zero and all-one) unique host addresses in each of 256
(28) new subnetworks. The term Subnet ID is often used to cover the Network ID and Subnet ID together.
For example, if you configure a computer or home router no distinction is made between the two.

12
8

64 32 16 8 4 2 1 12
8

64 32 16 8 4 2 1 12
8

64 32 16 8 4 2 1 12
8

64 32 16 8 4 2 1

172 . 16 . 1 . 5
IP Address: 1 0 1 0 1 1 0 0 . 0 0 0 1 0 0 0 0 . 0 0 0 0 0 0 0 1 . 0 0 0 0 0 1 0 1
Subnet mask: 1 1 1 1 1 1 1 1 . 1 1 1 1 1 1 1 1 . 1 1 1 1 1 1 1 1 . 0 0 0 0 0 0 0 0

1 0 1 0 1 1 0 0 . 0 0 0 1 0 0 0 0 . 0 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 0
Network ID Subnet ID Host ID

A network diagram showing subnetwork segments might look like this:

Server
172.16.2.3

172.16.0.1

82.152.112.53

82.152.112.52

WAP

Router

Router

Router

Firewall

Internet Segment
172.16.0.0

Sales segment 172.16.1.0

Accounts segment 172.16.2.0

Q2: Suggest a suitable IP address for the Wireless Access Point in the diagram above.

10-60

ChapTEr 70 – FUNcTION APPLIcATION

367

Chapter 70 – Function application

Objectives

• Understand what is meant by partial function application

• Know that a function takes only one argument which may itself be a function

• Define and use higher-order functions, including map, filter and fold

Higher-order functions
A higher-order function is one which either takes a function as an argument or returns a function as a
result, or both. Later in this chapter we will be looking at the higher-order functions map, filter and fold,
in which the first argument is a function and the second argument is a list on which the function operates,
returning a list as a result.

Every function in Haskell takes only one argument. This may seem like a contradiction because we have
seen many functions, such as the one below which adds three integers,

add3Integers x y z = x + y + z

which appear to take several arguments. So how can this be true?

Any function takes only one parameter at a time
Taken at face value and assuming the function takes three integer parameters and returns an integer
result, the type declaration for this function would normally be written

add3Integers :: integer -> integer -> integer -> integer

It could also be written

add3Integers :: integer -> (integer -> (integer -> integer))

How the function is evaluated
What happens when you write add3Integers 2 4 5 ?

The function add3Integers is applied to the arguments. It takes the first argument 2 and produces a
new function (shown in blue above) which will add 2 to its arguments, 4 and 5.

add3Integers New function
add y to 2

New function
add z to 6

x = 2

x = 2

y = 4

z = 5

11

ƒƒƒ

This function (shown in blue) produces a new function (shown in green) that takes the argument 5 and
adds it to 6, returning the result, 11.

Our function add3Integers takes an integer argument (2) and returns a function of type

(integer -> (integer -> integer))

12-70

APPENDIX B – ADDERS AND D-TYPE FLIP-FLOPS

388

Concatenating full adders
Multiple full adders can be connected together. Using this construct, n full adders can be connected
together in order to input the carry bit into a subsequent adder along with two new inputs to create a
concatenated adder capable of adding a binary number of n bits.

0C3 1C2 1C1

0A3 0A2 1A1 1A0 3
+ 1B3 0B2 1B1 1B0 11
= 1S3 1S2 1S1 0S0 14

1-bit
Full

Adder

1-bit
Full

Adder

1-bit
Full

Adder

1-bit
Full

Adder

A3 B3 A2 B2 A1 B1 A0

C0C1C2C3C4

S0S1 S2S3

B0

Q1: What would be the output S4 from a fifth adder connected to the diagram above if the inputs for
A4 and B4 were 0 and 1? What would be the output C5?

D-type flip-flops
A flip-flop is an elemental sequential logic circuit that can store one bit and flip between two states, 0
and 1. It has two inputs, a control input labelled D and a clock signal.

The clock or oscillator is another type of sequential circuit that changes state at regular time intervals.
Clocks are needed to synchronise the change of state of flip-flop circuits.

Clock period

Falling edge
1

0 Clock
width

Rising
edge

The D-type flip-flop (D stands for Data or Delay) is a positive edge-triggered flip-flop, meaning that it
can only change the output value from 1 to 0 or vice versa when the clock is at a rising or positive edge,
i.e. at the beginning of a clock period.

When the clock is not at a positive edge, the input value is held and does not change. The flip-flop
circuit is important because it can be used as a memory cell to store the state of a bit.

Output Q

Output Q

Data input D

Clock signal

D-Type
Flip-flop

B

APPENDIX B – ADDERS AND D-TYPE FLIP-FLOPS

389

Output Q only takes on a new value if the value at D has changed at the point of a clock pulse. This
means that the clock pulse will freeze or ‘store’ the input value at D until the next clock pulse. If D
remains the same on the next clock pulse, the flip-flop will hold the same value.

The use of a D-type flip-flop as a memory unit
A flip-flop comprises several NAND (or AND and OR) gates and is effectively 1-bit memory. To store eight
bits, eight flip-flops are required. Register memories are constructed by connecting a series of flip-flops
in a row and are typically used for the intermediate storage needed during arithmetic operations. Static
RAM is also created using D-type flip-flops. Imagine trying to assemble 16GB of memory in this way!

The graph below illustrates how the output Q only changes to match the input D in response to the rising
edge on the clock signal. Q therefore delays, or ‘stores’ the value of D by up to one clock cycle.

1
D

Q

Clock

0

1

0

Exercises

1. A half-adder is used to find the sum of the addition of two binary digits.

(a) Complete the diagram below to construct a half adder circuit. [1]

S

C

A

B

(b) Complete the following truth table for a half adder’s outputs S and C.

A B S C

 [2]

(c) How does a full adder differ from a half adder in terms of its inputs? [2]

B

INDEX– AQA A LEVEL COMPUTER SCIENCE

391

A
absolute error, 385
abstract data types, 188
abstraction, 52, 108

data, 57
functional, 56
problem, 57
procedural, 55

accumulator, 132, 138
active tags, 152
ADC, 90
adders

concatenating, 387
address bus, 127, 128, 135
addressing mode

direct, 139
immediate, 139

adjacency
list, 208
matrix, 208

ADT, 188
aggregation, 353
agile modelling, 342
Alan Turing, 273
algorithm, 2
ALU, 132
Amazon, 179
analogue

data, 89
to digital conversion, 90

analysis, 34, 342
AND, 10, 144
AND gate, 115
API, 313
appending, 372
application layer, 300, 301
Application Programming

Interface, 103, 313
application software, 102
arithmetic logic unit, 127, 132
arithmetic operations, 3, 127, 143
ARPANET, 288
array, 17, 19, 190
ASCII, 73
assembler, 110
assembly language, 108,

109, 140, 142
association, 353
asymmetric encryption, 296

asynchronous transmission, 162
attributes, 319, 347
audio bit depth, 88
automation, 58
automaton, 61

B
backing store management, 104
Backus-Naur form, 278
bandwidth, 161
barcode reader, 149
barcodes

2-D, 148
linear, 148

base case, 224
baud rate, 161
behaviours, 347
Big Data, 374
Big-O notation, 229, 231
binary

addition, 77
converting to and from decimal, 69
file, 31
fixed point, 80
floating point, 81
multiplication, 78
negative numbers, 79
number system, 69
subtraction, 80

binary expression tree, 286
binary search, 236

recursive algorithm, 237
tree, 212

binary search tree, 215
binary tree search, 238
bit, 72

depth, 88
rate, 161

bitmap image, 83
block-structured languages, 39
Blu-Ray, 155
BNF, 278
Boolean algebra, 120

Absorption rules, 120
Associative rules, 120
Commutative rules, 120
Distributive rules, 120

Boolean operators, 10

breadth-first
search, 248
traversal, 245, 246

bridges of Königsberg, 54
browser, 305
bubble sort, 44, 238
bus, 127

address, 128
control, 128
data, 128

byte, 72
bytecode, 112

C
cache memory, 135
Caesar cipher, 96
call stack, 200, 225
camera-based readers, 150
cardinality, 265
carry, 78
Cartesian product, 266
CASE, 10
CCD reader, 150
CD-ROM, 155
Central Processing Unit, 126
check digit, 75
checksum, 75, 292
ciphertext, 96, 295
CIR, 133
circular queue, 190
class, 348
classful addressing, 308
classless addressing, 308
client-server

database, 339
model, 313
network, 168

clock speed, 135
CMOS, 151
co-domain, 360
collision, 202

resolution, 204
Colossus computer, 106
colour depth, 83
comments, 3
commitment ordering, 340
compact representation, 266
compare and branch

instructions, 143

Index

Index

INDEX– AQA A LEVEL COMPUTER SCIENCE

392

compiler, 110, 112

composite data types, 188

composition, 57, 353

compression

dictionary-based, 95

lossless, 93

lossy, 93

computability, 273

computable problems, 256

computational thinking, 35, 52

Computer Misuse Act, 183

constant, 6

constructor, 348

control bus, 127, 128

control unit, 127, 132

convex combination, 220

Copyright, Designs and

Patents Act (1988), 183

CPU, 126

CRC, 292

CRUD, 314

cryptanalysis, 96, 97

CSMA/CA, 173

CSS Object Model, 305

CSSOM, 305

current instruction register, 133

cyber-attack, 177

cyber-bullying, 181

cyclical redundancy check, 292

D

DAC, 90

data

analogue, 89

boundary, 48

bus, 127, 128, 135

communication, 159

digital, 89

erroneous, 48

normal, 48

structures, 17

transfer operations, 143

types, 3

user-defined type, 29

data abstraction, 188

data packets, 292

Data Protection Act (1998), 183

database

defining a table, 336
locking, 340
normalisation, 324
relational, 323

De Morgan’s laws, 118
decomposition, 57
denary, 80
depth-first

traversal, 243
design, 34, 343
destruction of jobs, 180
dictionary, 205
dictionary based compression, 95
digital

camera, 151
certificate, 297
data, 89
signature, 296
to analogue conversion, 90

digraph, 207
Dijkstra’s algorithm, 249, 293
directed graph, 207
disk defragmenter, 101
divide and conquer, 43
DNS, 290
Document Object Model, 305
DOM, 305
domain, 360
domain name, 289, 290

fully qualified, 291
Domain Name System, 290
dot product, 220
DPI, 83
driverless cars, 182
dry run, 49
D-type flip-flop, 388, 389
dual-core processor, 134
dynamic data structure, 190
dynamic filtering, 295

E
EAN, 76
early computers, 106
eBay, 179
edge, 207
elementary data types, 17, 188
embedded systems, 130
encapsulating what varies, 357
encapsulation, 188, 350

encryption, 96, 295
asymmetric, 296
private key, 296
public key, 296
symmetric, 296

Enigma code, 106
entity, 319

identifier, 319
relationship diagram, 320, 321

error checking, 74
ethics, 182
evaluating a program, 46
evaluation, 50, 344
event messages, 91
exbi, 72
exponent, 381
exponential function, 230

F
fact-based model, 377
fetch-execute cycle, 134
field, 29
FIFO, 188
file, 29

binary, 31
server, 168
text, 29

File Transfer Protocol, 303
filter, 370
finite set, 265
finite state

automaton, 61, 260
machine, 60, 260

firewall, 294
first generation language, 53
First In First Out, 188
First normal form, 324
first-class object, 362
fixed point, 385
floating point, 385

binary numbers, 381
fold (reduce), 370
folding method, 203
FOR … ENDFOR, 15
foreign key, 320, 324
FQDN, 291
frequency of a sound, 90
FSM, 260
FTP, 303

Index

INDEX– AQA A LEVEL COMPUTER SCIENCE

393

full adder, 387

Fully Qualified Domain Names, 291

function, 360

application, 362

higher-order, 367

functional

composition, 364

programming, 360

functions, 5, 21, 230

string-handling, 5

G

gate

NOT, AND, OR, 114

XOR, NAND, NOR, 116

gateway, 293

general purpose registers, 132

getter messages, 349

gibi, 72

Google, 179

Street View, 178

graph, 207

schema, 377

theory, 55

traversals, 243

H

half-adder, 387

Halting problem, 257

hard disk, 154

hardware, 100

Harvard architecture, 130

hash table, 202

hashing algorithm, 202

 folding method, 203

Haskell, 360, 361

heuristic methods, 256

hexadecimal, 70

hierarchy chart, 40

higher-order function, 367

high-level languages, 109

HTTP request methods, 314

I

I/O controller, 127, 129

IF … THEN, 8

image resolution, 83

immutable, 363, 372

imperative language, 109
implementation, 344
infinite set, 266
infix expression, 284
information hiding, 54, 57, 188, 350
inheritance, 351
in-order traversal, 214, 225, 226
Instagram, 181
instantiation, 348
instruction set, 107, 110
interface, 23, 129, 357
Internet

registrars, 289
registries, 290
security, 172, 294
Service Providers, 289

Internet of things, 182
interpreter, 111, 112
interrupt, 136

handling, 105
Interrupt Service Routine, 136
intractable problems, 255
IP address, 291

private, 309
public, 309
structure, 307

irrational number, 68
ISBN, 76
ISP, 289
Iteration, 13

J
Java Virtual Machine, 112
JSON, 315, 316

K
kibi, 72
kilobyte, 72

L
LAN, 164
laser

printer, 152
scanner, 150

latency, 161
legislation, 183
library programs, 101
limits of computation, 254
linear function, 230

linear search, 235

link layer, 300, 301

linking database tables, 324

list, 194, 371

appending to, 372

prepending to, 372

loader, 103

local area network, 164

logarithmic function, 231

logic gates, 114

logical bitwise operators, 144

logical operations, 127

low-level language, 108

M

MAC address, 167, 302

machine code, 106

instruction format, 138

mail server, 304

majority voting, 75

malicious software, 297

malware, 297

mantissa, 381

many-to-many relationship, 321, 326

map, 369

MAR, 133

maze, 247

MBR, 133

Mealy machines, 260, 261

mebi, 72

Media Access Control, 301

memory

address register, 133

buffer register, 133

data register, 133

management, 104

merge sort, 239

space complexity, 241

time complexity, 241

metadata, 84

meta-languages, 278

MIDI, 91

metadata, 91

mnemonics, 142

modelling data requirements, 343

modular programming, 25

module, 39

modulo 10 system, 76

Index

394

N
NAND gate, 116
NAT, 310
natural number, 68, 265
nested loops, 15
network

client-server, 168
interface cards, 294
layer, 300, 301
peer-to-peer, 169
security, 172, 294
station, 171

Network Address
Translation, 310, 311

nibble, 72
NIC, 294
node, 207
non-computable problems, 256
NOR gate, 116
normal form

first1NF, 324
second 2NF, 326
third 3NF, 326

normalisation, 327
of databases, 324
of floating point number, 382

NOT, 10, 11, 144
gate, 114

number
irrational, 68
natural, 68
ordinal, 68
rational, 68
real, 68

Nyquist’s theorem, 90

O
object code, 110
object-oriented programming, 347
one-time pad, 97
opcode, 106, 138
operand, 106, 138
operating system, 100, 103
operation code, 106, 138
optical disk, 155
OR, 10, 144

gate, 115
ORDER BY, 332
ordinal number, 68

oscillator, 388
overflow, 78, 386
override, 354
Oyster card, 152

P
packet filters, 294
packet switching, 292
PageRank algorithm, 209
parallel data transmission, 160
parity, 162

bit, 74
partial dependency, 326
partial function application, 368
passive tags, 152
PC, 133
pebi, 72
peer-to-peer network, 169
pen-type reader, 149
peripheral management, 105
permutations, 231
phishing, 299
piracy, 170
pixel, 83
plaintext, 96, 295
platform independence, 112
polymorphism, 354
polynomial function, 230
polynomial-time solution, 255
POP3, 304
port forwarding, 311
Post Office Protocol (v3), 304
postfix

expression, 284
notation, 283

post-order traversal, 214, 227
precedence rules, 283
pre-order traversal, 213, 227
prepending, 372
primary key, 319
priority queue, 192
private, 348

key encryption, 296
modifier, 356

problem solving strategies, 36
procedural programming, 347
procedure, 21
procedure interface, 56
processor, 127

instruction set, 138
performance, 134
scheduling, 104

program
constructs, 8
counter, 133

programming paradigm, 360
proper subset, 266
protected access modifier, 356
protocol, 163
prototype, 343
proxy server, 294, 295
pseudocode, 2
public, 348

modifier, 356

Q
quad-core processor, 134
queue, 188

operations, 189
Quick Response (QR) code, 148

R
Radio Frequency Identification, 151
range, 79
raster, 83
rational number, 68, 265
real number, 265
record, 29
record locking, 340
recursion, 224
recursive algorithm, 237
reference variable, 349
referential transparency, 363
register, 127
regular expressions, 269
regular language, 270
rehashing, 204
relation, 323
relational database, 320, 323
relational operators, 8
relationships, 320
relative error, 385
REPEAT … UNTIL, 14
Representational State Transfer, 314
resolution, 83
resource management, 100
REST, 314

Index

INDEX– AQA A LEVEL COMPUTER SCIENCE

395

Reverse Polish notation, 283
RFID, 151
RLE, 94
root node, 211
rooted tree, 211
rounding errors, 384
router, 171, 293
RTS/CTS, 173
Run Length Encoding, 94

S
sample resolution, 88
scaling vectors, 220
Second normal form, 326
secondary storage, 154
Secure Shell, 304
SELECT .. FROM .. WHERE, 330
selection statement, 8
serial data transmission, 159
serialisation, 340
server

database, 168
file, 168
mail, 168
print, 168
web, 168

Service Set Identification, 172
set, 265

compact representation, 266
comprehension, 266
countable, 266
countably infinite, 266
difference, 267
intersection, 267
union, 267

setter messages, 349
side effects, 363
simulation, 188
Snowden, Edward, 176
social engineering, 299
software, 34, 100, 102

application, 102
bespoke, 102
development, 342
off-the-shelf, 102
system, 100
utility, 101

solid-state disk, 156
sorting algorithms, 44, 238

sound sample size, 89
source code, 110
space complexity, 241
spam filtering, 299
specifier

private, 356
protected access, 356
public, 356

SQL, 330, 338
SSD, 156
SSH, 304
SSID, 172
stack, 198

call, 200
frame, 201
overflow, 200

underflow, 200
state, 347

transition diagrams, 260
transition table, 261

stateful inspection, 295
stateless, 363
static data structure, 190
static filtering, 294
Static IP addressing, 310
stored program concept, 129
string conversion, 5
structured programming, 39
Structured Query Language, 330
subclass, 351
subnet mask, 308, 310
subnetting, 309
subroutines, 21

advantages of using, 25
user-written, 22
with interfaces, 23

subset, 266
substitution cipher, 96
superclass, 351
symmetric encryption, 296
synchronous transmission, 162
synonym, 202
syntax diagrams, 280
syntax error, 111
system

bus, 127
clock, 132
vulnerabilities, 298

T
table structure, 336
TCP/IP protocol stack, 300
tebi, 72
Telnet, 304
test plan, 48
testing, 48, 344
text file, 29
thick-client computing, 316
thin-client computing, 316
Third normal form, 326
Tim Berners-Lee, 288
time complexity, 229, 233, 235, 236

of merge sort, 241
timestamp ordering, 340
topology

logical, 166
physical, 166
physical bus, 164
physical star, 165

trace table, 14, 49, 107
tractable problems, 255
transition functions, 276
translators, 101
transmission rate, 161
transport layer, 300, 301
travelling salesman problem, 254, 256
traversing a binary tree, 213
tree, 211

child, 211
edge, 211
leaf node, 211
node, 211
parent, 211
root, 211
subtree, 211
traversal algorithms, 225

trojans, 298
trolls, 181
truth tables, 114
TSP, 256
Turing machine, 273
two’s complement, 80
typeclasses, 365

U
underflow, 386
undirected graph, 207
Unicode, 74

Index

INDEX– AQA A LEVEL COMPUTER SCIENCE

396

Uniform Resource Locators, 289
union, 267
universal Turing machine, 276
URLs, 289
user generated content, 181
user interface, 100
user-defined data type, 29
utility software, 101

V
variables, 6

global, 24
local, 24

vector, 217
adding and
subtracting, 218
calcuating an angle, 221
convex
combination, 220
dot product, 220
scaling, 220

vector graphics, 85
Vernam cipher, 96
vertex, 207
virtual memory, 104
virus checker, 101
viruses, 297
von Neumann, 100

machine, 129

W
WAP, 171
web server, 305
WebSocket protocol, 314
weighted graph, 207
WHILE … ENDWHILE, 13
whitelist, 172
Wi-Fi, 171
Protected Access, 172
Wilkes, Maurice, 100
WinZip, 101
wireless network

access point, 171
interface controller, 171

word, 128
word length, 135
World Wide Web, 288
worms, 297
WPA, 172
WWW, 288

X
XML, 315, 316
XOR, 11, 144

gate, 116

Y
yobi, 72

Z
zebi, 72

Index

ISBN: 978-1-910523-07-0

The aim of this textbook is
to provide a detailed
understanding of each topic
of the new AQA A Level
Computer Science
specification. It is presented in
an accessible and interesting
way, with many in-text
questions to test students’
understanding of the material
and their ability to apply it.

The book is divided into 12
sections, each containing
roughly six chapters. Each
chapter covers material that
can comfortably be taught
in one or two lessons. It will
also be a useful reference and
revision guide for students
throughout the A Level course.
Two short appendices contain
A Level content that could
be taught in the first year of
the course as an extension to
related AS topics.

Each chapter contains
exercises, some new and
some from past examination
papers, which can be set as
homework. Answers to all
these are available to teachers
only, in a Teachers Supplement
which can be ordered from
our website
www.pgonline.co.uk

About the authors
Pat Heathcote is a well-known
and successful author of
Computer Science textbooks.
She has spent many years as a
teacher of A Level Computing
courses with significant
examining experience. She has
also worked as a programmer
and systems analyst, and was
Managing Director of Payne-
Gallway Publishers until 2005.

Rob Heathcote has many
years of experience teaching
Computer Science and is
the author of several popular
textbooks on Computing. He
is now Managing Director of
PG Online, and writes and
edits a substantial number of
the online teaching materials
published by the company.

	Front Cover
	Contents
	Section 1
	Section 2
	Section 3
	Section 4
	Section 5
	Section 6
	Section 7
	Section 8
	Section 9
	Section 10
	Section 11
	Section 12
	Appendix A
	Appendix B
	Index

