Contents

Core technical principles

Section 1 New and emerging technologies

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Industry and enterprise</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Sustainability and the environment</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>People, culture and society</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>Production techniques and systems</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>Informing design decisions</td>
<td>25</td>
</tr>
</tbody>
</table>

Section 2 Energy, materials, systems and devices

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Energy generation</td>
<td>32</td>
</tr>
<tr>
<td>7</td>
<td>Energy storage</td>
<td>38</td>
</tr>
<tr>
<td>8</td>
<td>Modern materials</td>
<td>43</td>
</tr>
<tr>
<td>9</td>
<td>Smart materials</td>
<td>49</td>
</tr>
<tr>
<td>10</td>
<td>Composite materials and technical textiles</td>
<td>55</td>
</tr>
<tr>
<td>11</td>
<td>Systems approach to designing</td>
<td>60</td>
</tr>
<tr>
<td>12</td>
<td>Electronic systems processing</td>
<td>64</td>
</tr>
<tr>
<td>13</td>
<td>Mechanical devices</td>
<td>70</td>
</tr>
</tbody>
</table>

Section 3 Materials and their working properties

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Papers and boards</td>
<td>81</td>
</tr>
<tr>
<td>15</td>
<td>Natural and manufactured timbers</td>
<td>84</td>
</tr>
<tr>
<td>16</td>
<td>Metals and alloys</td>
<td>88</td>
</tr>
<tr>
<td>17</td>
<td>Polymers</td>
<td>91</td>
</tr>
<tr>
<td>18</td>
<td>Textiles</td>
<td>94</td>
</tr>
</tbody>
</table>
Specialist technical principles

Section 4 Common specialist technical principles

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Forces and stresses on materials and objects</td>
<td>102</td>
</tr>
<tr>
<td>20</td>
<td>Improving functionality</td>
<td>105</td>
</tr>
<tr>
<td>21</td>
<td>Ecological and social footprint</td>
<td>111</td>
</tr>
<tr>
<td>22</td>
<td>The six Rs</td>
<td>119</td>
</tr>
<tr>
<td>23</td>
<td>Scales of production</td>
<td>124</td>
</tr>
</tbody>
</table>

Section 5A Papers and boards

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>Sources, origins and properties</td>
<td>130</td>
</tr>
<tr>
<td>25</td>
<td>Working with papers and boards</td>
<td>133</td>
</tr>
<tr>
<td>26</td>
<td>Commercial manufacturing, surface treatments and finishes</td>
<td>141</td>
</tr>
</tbody>
</table>

Section 5B Timber based materials

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>Sources, origins and properties</td>
<td>147</td>
</tr>
<tr>
<td>28</td>
<td>Working with timber based materials</td>
<td>151</td>
</tr>
<tr>
<td>29</td>
<td>Commercial manufacturing, surface treatments and finishes</td>
<td>159</td>
</tr>
</tbody>
</table>

Section 5C Metal based materials

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Sources, origins and properties</td>
<td>163</td>
</tr>
<tr>
<td>31</td>
<td>Working with metal based materials and fixings</td>
<td>166</td>
</tr>
<tr>
<td>32</td>
<td>Commercial manufacturing, surface treatments and finishes</td>
<td>176</td>
</tr>
</tbody>
</table>

Section 5D Polymers

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>Sources, origins and properties</td>
<td>180</td>
</tr>
<tr>
<td>34</td>
<td>Working with polymer based materials and fixings</td>
<td>185</td>
</tr>
<tr>
<td>35</td>
<td>Commercial manufacturing and quality control</td>
<td>194</td>
</tr>
</tbody>
</table>

Section 5E Textile based materials

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>Sources, origins and properties</td>
<td>199</td>
</tr>
<tr>
<td>37</td>
<td>Working with textile based materials and fixings</td>
<td>204</td>
</tr>
<tr>
<td>38</td>
<td>Commercial manufacturing, surface treatments and finishes</td>
<td>211</td>
</tr>
</tbody>
</table>

Section 5F Electronic systems

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>Selection of materials and components</td>
<td>216</td>
</tr>
<tr>
<td>40</td>
<td>Working with electronic components</td>
<td>220</td>
</tr>
<tr>
<td>41</td>
<td>Commercial manufacturing and quality control</td>
<td>228</td>
</tr>
</tbody>
</table>
Designing and making principles

Section 6 Designing principles 237

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>Investigation, primary and secondary data</td>
<td>238</td>
</tr>
<tr>
<td>43</td>
<td>The work of others</td>
<td>245</td>
</tr>
<tr>
<td>44</td>
<td>Design strategies</td>
<td>254</td>
</tr>
<tr>
<td>45</td>
<td>Communication of design ideas and prototype development</td>
<td>259</td>
</tr>
</tbody>
</table>

Section 7 Making principles 269

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>Selection of materials and components</td>
<td>270</td>
</tr>
<tr>
<td>47</td>
<td>Tolerances and allowances</td>
<td>273</td>
</tr>
<tr>
<td>48</td>
<td>Material management and marking out</td>
<td>276</td>
</tr>
<tr>
<td>49</td>
<td>Specialist tools, equipment, techniques and processes</td>
<td>281</td>
</tr>
<tr>
<td>50</td>
<td>Surface treatments and finishes</td>
<td>284</td>
</tr>
</tbody>
</table>

Index 290
Section 1
New and emerging technologies

In this section:

Chapter 1 Industry and enterprise 2
Chapter 2 Sustainability and the environment 7
Chapter 3 People, culture and society 13
Chapter 4 Production techniques and systems 21
Chapter 5 Informing design decisions 25
Power generation is more efficient during periods of heavy rainfall. At other times, water is pumped back up to the top of the reservoir when the demand for electricity is low. The flow of water through the turbine is easily controlled, making it simple to alter the power being produced depending on the demand at different times of the day.

Q7 What might be the impact on the natural environment and wildlife of constructing a dam at the end of a valley and flooding the valley to create a reservoir for a hydroelectric power station?

Q8 List as many positive factors for hydroelectric power as you can.

Biofuel

The production of **biofuel** is becoming a viable way of producing energy for our transportation and heating needs. Oil- and starch-producing crops are grown, harvested and refined into a number of products, including biodiesel. The process is commonly known as **biomass** energy production. The term biomass can include other solid biofuels such as wood chips and farm waste.

In 2016, only about 3% of fuel for the UK’s transportation system came from biodiesel, according to the Department of Transport. A growing number of companies and private users are recycling spent cooking oil, (a waste product from the catering industry) and converting it into biodiesel by refining it independently.
Shape memory alloy

Most materials have some form of memory, meaning that they will try to resist deformation or spring back to their original shape. **Shape memory alloys** (SMA) take this a step further; they can remember a preset shape and return to it despite being dramatically reshaped. The stimulus for returning to the preset shape is heat or electricity.

Nitinol, an alloy of nickel and titanium, is the most commonly used SMA. To program its shape memory, the nitinol must be held in the desired position and heated to around 540°C, then allowed to cool. It can then be deformed to a different shape. When it is heated to around 70°C, it will spring back to its programmed shape. This can also be achieved by passing an electric current through it. It can be re-programmed by reheating it to 540°C.

<table>
<thead>
<tr>
<th>Name and stimuli</th>
<th>Appearance</th>
<th>Image</th>
<th>Characteristics</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shape memory alloy (Nitinol)</td>
<td>Mid-grey metal wire of varying thickness. Also available in sheets</td>
<td></td>
<td>A shape can be programmed when heated to 540°C; it can be deformed and will return to the memory shape when reheated to 70°C</td>
<td>Frames for glasses, dental braces, self-expanding stents used in surgical procedures to open capillaries, fire sprinklers</td>
</tr>
<tr>
<td>Heat or electricity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SMA used as a self-expanding surgical stent

Nitinol can also be used as **muscle wire**. The wire is first stretched and then, when an electrical current is passed through it, it will contract approximately 5% of its length. This is used in dental braces.

Q5 Explain how a piece of shape memory alloy could be used in a fire detector controlling a sprinkler system.
9. Explain one reason why Kevlar is an appropriate choice of material for the firefighter protective gloves shown below.

10. Give two applications for microencapsulated fabrics.

11. (a) Draw the correct circuit symbol for a PTM and a PTB switch.

 (b) Describe one operational difference between a PTM and a PTB switch.

12. Use notes and sketches to show the difference between an analogue and digital electrical signal.

13. (a) Name the type of motion shown below:

 (b) Give one application or machine which exhibits the type of motion you have named in your answer to (a).

14. Identify the class of lever shown below for the car foot pump.

15. (a) Describe the action a follower goes through when following a snail shaped cam.

 (b) Name two types of cam follower.

16. Explain one reason why an idler gear is used in a gear train.
Non-woven textiles

Non-woven fabrics are made directly from fibres without being spun into yarns. The most commonly available non-woven fabrics are bonded fabrics made from a web of fibres held together with heat or adhesive. Common uses of non-woven fabrics include disposable products such as garments worn by surgeons and crime scene investigators, dishcloths and interfacings. Non-woven fabrics can be given special treatments such as flame resistance to make head rest covers on trains and aircraft.

Felt is a mechanical process which has traditionally been done by hand, but is now mainly machine produced. It involves matting together wool or synthetic fibres using a combination of heat, pressure, moisture and movement to mesh the fibres together in a random way. Felt can be formed into shapes when wet (see drape formed hats in Chapter 37), but it does not have any elasticity and will not drape well when dry. It is not strong and can pull apart under tension, but unlike woven fabric, will not fray when cut.

<table>
<thead>
<tr>
<th>Name</th>
<th>Appearance</th>
<th>Image</th>
<th>Characteristics</th>
<th>Example uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonded fabric</td>
<td>Random laid fibres are visible in the fabric, it can have small holes or a textured surface</td>
<td>![Bonded fabric image]</td>
<td>Fabrics lack strength, they have no grain so can be cut in any direction and do not fray</td>
<td>Disposable products such as protective clothing worn for hygiene purposes, tea bags, dish cloths and dusters</td>
</tr>
<tr>
<td>Felted fabric</td>
<td>Matted fibres randomly interspersed, wide range of colours and thicknesses</td>
<td>![Felted fabric image]</td>
<td>Can be formed with moisture and heat; once dry it has no elasticity or drape, and can pull apart easily. Woollen varieties can be expensive</td>
<td>Hats, handicraft, pads under furniture to prevent scratching, soundproofing and insulation</td>
</tr>
</tbody>
</table>

Q5: What might happen to woollen felted products if they are washed in hot water?
Chapter 38 – Commercial manufacturing, surface treatments and finishes

Objectives

- Know and understand how textile based materials are selected and processed for commercial products
- Understand why aids are used to judge quality and accuracy before and during processing
- Understand how surface treatments and finishes affect the functional and aesthetic properties of textile products

Textiles for commercial products

Commercial textile production has developed significantly over the last 50 years owing to new materials being invented as well as new industrial manufacturing methods and higher levels of computer driven automation. Both ‘technology push’, in the form of new materials and ‘market pull’ with demand for greater performance of fabrics, have contributed to a huge and expanding industry.

The introduction of stretch fabrics has transformed aerodynamics, especially seen in cycling and swimming, enabling items of clothing to fit tightly thus reducing drag yet allowing for freedom of movement by the wearer. Wicking fabrics have also been of huge benefit to athletes and outdoor adventurers by allowing perspiration to evaporate quickly, keeping the wearer dry.

Sportswear and outdoor apparel have gone through more changes than many other areas of textiles over the last few decades owing to constant developments in new technologies, giving a greater range of physical and working properties to use. These fabrics can also take advantage of microencapsulation. (See Chapter 10 for more detail.)

Q1 How have developments in commercial textiles helped to improve comfort and safety in motorsport apparel?

Commercial developments in the area of home and business furnishings have led to a greater range of choice through colours, styles and levels of quality. Furnishings cover a multitude of interior, and increasingly, exterior quality textiles, including carpets, rugs, upholstery fabrics, curtains, cushions and many more. These products all form part of our living and working spaces and are chosen for many different reasons. Aesthetics are very important to most people, but the physical and working properties may well be of equal or greater concern to a customer.
Section 5 Exercises

Exercises in this section are generic so that answers may be given in context that apply appropriate techniques, knowledge and understanding from any of the material areas.

1. Choose one of the materials in the table below.

<table>
<thead>
<tr>
<th>Materials</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid white board</td>
<td>Ash</td>
<td>Low carbon steel</td>
<td>Acrylic</td>
<td>Cotton</td>
</tr>
</tbody>
</table>

Name one surface finish or treatment that can be applied to the material to enhance the functional or mechanical properties.

Use notes and/or sketches to explain how the surface finish or treatment can be changed to improve or enhance its properties. [5]

Name of material: ___

Surface finish or treatment: __

2. Describe two ways that materials can be shaped or formed.

Give examples in your answers. [4]

3. Five materials are listed in the table below. Choose one material:

<table>
<thead>
<tr>
<th>Materials</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrugated card</td>
<td>Plywood</td>
<td>Low carbon steel</td>
<td>Polyvinyl chloride (PVC)</td>
<td>Wool yarn</td>
</tr>
</tbody>
</table>

(a) State one raw primary source material of your chosen material. [1]

(b) Give one stock form in which the material is likely to be available. [1]

(c) Describe the manufacturing process(es) used to turn the raw primary source material into a stock form. You may include sketches in your answer. [3]

(d) Describe two ways that one of the materials can be modified. [4]

4. Choose one product or component from the table below and describe two features that make it suitable for mass production. [4]

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium drink can</td>
<td>PET water bottle</td>
<td>Foil lined board</td>
<td>Cotton skirt</td>
<td>Pine roof truss</td>
</tr>
</tbody>
</table>
Designer investigation:

Philippe Starck 1949–present

The truly multi-faceted French designer, Philippe Starck was born in Paris where his design studio is based to this day. His father was an aeronautical engineer and it is said that young Starck had a passion for design from an early age, hence attending Ecole Nissim de Camondo, a school of product design and interior architecture in Paris. He started by designing inflatable furniture and, although not a great success, it gathered much needed attention.

Starck was offered a job as an artistic director with Pierre Cardin which was a good stepping stone but he preferred much simpler designs than the flamboyance of Cardin. Having successfully created interior designs for Parisian nightclubs he launched Starck Products in 1979. His big break came in 1982 after being selected to work on the private residence of the then French President. Since then he has worked on numerous projects from simple mass produced items for brands such as Alessi and Microsoft to furniture, electrical goods and a number of top end hotels. He is involved in all aspects of design and has even produced motorbikes, electric vehicles and yachts.

Starck is a prolific and innovative designer who has produced many iconic products; some that have already become modern classics such as the ‘Juicy Salif’ lemon squeezer. He is considered by some to put form ahead of function, making some of his products beautiful but impractical to use. He often utilises organic forms which are sleek, simplistic and streamlined. Much of his work can be quirky and humorous; he readily confesses that he likes to inject mystery, magic and quirkiness into his designs. Starck likes to work at reducing the amount of materials used in manufacture and packaging, selecting energy efficient and sustainable options where possible.

The Juicy Salif lemon squeezer, by Philippe Starck
Drawing techniques

There are three main types of 3D drawing styles that you are likely to use within your portfolio. These vary in their level of complexity to produce and have different advantages and disadvantages.

Oblique projection uses a 45-degree angle to draw lines that represent the depth of the side (end) and the top (plan) of the drawing. The front of the drawing is face on to the viewer which actually creates a visual lie. It is impossible to see the front of a cuboid straight on and also see the side and the top.

Oblique projection is a technique that can get an idea across quickly and simply. It can be very useful in the early stages of developing ideas.

Isometric projection uses a 30-degree angle and is much more realistic. For a basic cuboid, all of the height, width and depth lines follow the 30-degree isometric grid lines. Dimensioning can be done accurately and, by using simple techniques, complex shapes can be constructed or carved out of the main cuboid.

Isometric projection is very good for design ideas that have a geometric shape. With some practice, it is also good to convey ideas quickly and to show where components and parts fit in relation to others.

Two-point perspective uses two vanishing points that are set to the outer edges of the page. The main construction lines that create the width and depth are all projected back to the two vanishing points.

Two-point perspective gives the most realistic view as it emulates the way the viewer’s eye sees perspective, meaning that things get smaller the further away they are. It is great technique to give a realistic view of what a product or prototype might look like. It is not so easy to add dimensions, in comparison to isometric projection.

Q4 Which 3D drawing technique would you choose if you were intending to make an accurate prototype of a product?
Chapter 48 – Material management and marking out

Objectives

- Understand how effective design planning can minimise waste
- Be aware of how design adaptations and use of tessellation can save time and materials
- Understand how to calculate the surface area and quantity of required materials
- Understand the value of using measurement and marking out to create an accurate and quality prototype
- Understand the use of datum points and coordinates
- Be able to recognise and characterise the appropriate tools and methods to mark out a range of materials to create prototypes

Planning

The key to material management is to plan ahead. Working out the best way to fit the required parts of a product onto the material efficiently is not as straightforward as one might imagine. Material tends to come in specific sizes, depending on the type of material. Papers and boards come in ‘A series’ sizes, for example A4 sheets are 210mm x 297mm. These A series sizes are all rectangular, so if you wanted to cut a square shaped section from the sheet you would automatically have waste. However, if you wanted a number of identical squares you could get a much larger sheet and divide it up, producing less waste than using a number of smaller sheets.

Q1

Using the standard A series paper sizes (covered in Chapter 25) answer the following questions.

(a) Calculate the waste if you cut a 210mm square from a sheet of A4 paper.
(b) Calculate the waste if you cut a 195mm square from a sheet of A4 paper.
(c) Which larger size of A series paper would be the most economical to use if you wanted to produce 66 squares at 195mm x 195mm?

As the majority of materials come in rectangular or other specific shapes and sizes there are a few basic rules to follow in order to use materials efficiently. For example, starting from the most effective edge or corner of a sheet and not somewhere in the middle, means that the material remaining is as large as possible and is in its most useable form. If cutting discs from a rectangular sheet consider the following options:

![Diagram of waste pieces A and B](image)

Extra circles cut from otherwise wasted material
Index

0–9
- 2D sketching 259
- 3D printing 192
- 3D sketching 259

A
- ABS 184
- absorbency 80
- acrylic 92, 203
- additives
 - paper and board 145
 - plastic 181
 - textiles 199
- Adidas 244
- aesthetics 266
- air-drying 147
- Alessi 248, 249, 253
- alloy 45, 88, 90, 164
- aluminium 48, 90, 164, 217
- ore 88
- analogue 64
- analysis of data 241
- anatomy 240
- animal skins 199
- annealing 175
- annotation 262
- anodising 179, 217
- anthropometrics 239, 240
- Apple 250
- appliances 228
- aramids 57, 200
- architecture 247
- architrave 152
- Art Deco 248
- Art Nouveau 248
- ash 85
- astable 65
- automation 2, 3, 21
- robotics 3
- belt 76
- bending 104, 108
 - wood 157
- bespoke 124, 207
- bias 201, 207
- billet 172
- binding 140
- biofuel 36, 116
- biomass 36
- Biopol 43
- bio-polymers 180, 183
- bitumen 180
- blackening 179
- blanking 175
- blast furnace 163
- blasting 179
- bleed proof paper 81
- blended fibres 96
- block and tackle 76
- blockboard 149
- blow moulding 196
- boards 81, 149
 - fibreboard 82
 - manufactured 87, 148
- bolts 168
- bonded fabric 97
- borehole 116
- bowing 147
- brass 90
- Braun 250
- brazing 174
- breadboard 265
- Breuer, Marcel 247
- broadband 45
- buildings 4
- bulk buying 223
- button 205
- buzzer 63
- CAM 21, 23, 213
- camshaft 74
- canting 206
- capacitor 222
- carbon 88, 111
 - dioxide 111
 - footprint 111, 120
 - offsetting 12
- carbon-fibre reinforced plastic (CRP) 56
- card based food packaging 142
- carding 201
- carton board 132, 142
- cartridge paper 81
- casing 224
- casting 173
 - metal 177
 - polymer resin 193
- cast iron 88
- cedar 86
- cellulose fibres 130
- Chanel, Coco 246
- charts 241
- children's wooden toys 159
- chipboard 87
- circuit boards 216
- circular cam 74
- climate change 118
- closed loop 60
- CMOS 220
- CMYK 143
- CNC 22, 216
- coated metals 179, 217
- coal 33
- cog 38, 76
- collaboration 254
- colour bars 145
- colour printing 143
- combing 201
- communication 259
- components 220
- composite materials 55, 106
- compression 39, 103
 - manufactured board 148
- conductive fabrics 57
- coniferous 84
- continuous improvement 11
- continuous production 126
- conversion 147
- cooking utensils 176
- Coolmorph 48, 184
- cooperative 6
- copper 90
 - clad circuit board 216
- corn starch 43
- corrosion 285
- corrugated card 82
- cotton 94, 200
- cotton paper 81
- counters 67
- countersink 152
- cracking 181
- crank 74
- crank and slider 73
- creasing 136
- crop marks 145
- crowdfunding 5
- crude oil 180
- cupping 147
current rating 220
cutlines 110
cutting
efficiently 276
fabric 206
papers and boards 135
PCBs 225
wood 155

<table>
<thead>
<tr>
<th>D</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td></td>
</tr>
</tbody>
</table>
| primary 238
secondary 239
sheet 283 | |
| datum 278
debossing 146
deciduous 84
decisions 68
deforestation 85, 114, 150
density 80
depth stop 178
desertification 115, 150 | |
| design | |
| brief 242, 265
fixation 256
for maintenance 27
specification 242 | |
| De Stijl 248
destructive testing 258
developing times | |
| PCB manufacture 232
die cutting, 137, 142
digital 64 | |
| DIL 220
Digital Light Processing 192 | |
| dimensional accuracy | |
| depth stop 178
go/no go fixture 161
laser settings 197
repeating print 214 | |
| DIP 220
dip coating 179
disabled 18
domestic appliances 228
dowel 152
drag 173
drape forming 207
drawing 259
drilling | |
| for oil 116
metal 170
PCBs 224
plastics 187
wood 154

dual in-line package 220
ductility 80
duplex board 82
duralumin 164
dyeing fabric 213
dynamic load 102
																		
dyson 229, 250 | |

<table>
<thead>
<tr>
<th>E</th>
<th></th>
</tr>
</thead>
</table>
| E12 resistor series 222
eccentric cam 74
economic challenge 244
efficient working 11
estanape 95, 203
elasticity 80
elderly 18
electrical conductivity 80
electrical fittings 181, 194
electroless plating 198
electrolysis 88, 164 | |
| electroplating 179, 198
embossing | |
| metal sheet 175
paper 146
ply form 133 | |
| emerging technologies | |
| emissions 117
encapsulation 138, 146
end of life disposal 28
energy | |
| compressed 38
electrical 32
generation 32
hydroelectric 35
kinetic 40 | |
| mechanical 38
nuclear 34, 37
potential 38, 40
renewable 32, 34 | |
| solar 35
storage 38
tidal 35 | |
| environment 9
environmental challenge 244
epoxy resin 93 | |
| equilibrium 71
ergonomics 240 | |
| etching 198
circuit board 216 | |
| PCB manufacture 232
times 232 | |
| e-textiles 57
euroslot 142
evaluation 258, 267
evergreen 84
exploded drawing 262 | |
| extraction 163
extrusion 196 | |

<table>
<thead>
<tr>
<th>F</th>
<th></th>
</tr>
</thead>
</table>
| fabric interfacing 108
Fairtrade 6, 113
faiths 17
farming 116
fashion 15, 26
fasteners | |
| paper and board 139
textiles 106, 205 | |
| Favile glasswork 249
feedback | |

| client 238
loop 61
responding to 267 | |
felling 84	
felt 207	
felting 97	
ferrous 88	
fibre optics 45	
fibres	
filament 200	
staple 200	
finite resources 7, 113	
fire resistant 58	
first angle projection 263	
first order lever 72	
flame	
retardants 58, 202	
hardening 233	
resistant 58	
flat follower 75	
flat pack furniture 159	
flax 200, 203	
fleece 200	
flexibility 107	
flocking 198	
flow soldering 230	
flyer 141	
flywheel 40	
FMS 23	
foam core board 83	
focus group 239	
foil lined board 82	
folding 108	
paper 136	
follower 74	
footprint	
carbon 111, 120	
ecological 112	
social 112	
forces 102	
bending 104	
compression 103	
shear 104	
tension 102	
torsion 103	
former 157, 207	
fossil fuels 33	
Foster, Norman 247	
fracking 33	
fractional distillation 180	
freehand sketching 257, 259	
frequency 67	
frosting 198	
FSC 150	
fulcrum 71	
functionality 266	
fur 200	
furnace 88, 163	
furnishings 211	
fused Deposition Modelling 192	
fusibility 80	
AQA GCSE (9-1) Design and Technology

Index

G
galvanizing 179
Gap 251
gas 33
gathering 209
gauge 167, 185
gears 38
driven 76
idler 76
train 75
generator 32, 37, 40
driven 76
idler 76
train 75
glass reinforced plastic (GRP) 55
globe warming 11, 150
go/no go 161
Gore-Tex 56
granules
polymer 186
graphene 14, 46
graphic design 245
graphite 46
graphs 241
greenhouse 111
green timber 147
grid paper 82
gsm 134

H
hand tools 176
hank 204
hardboard 149
hardening 177
hardness 80
hardwood 84
Harry Thaler 109
harvesting 114
headstock 172
health and safety 282
Health and Safety at Work Act 113
Health and Safety Executive 113
heart shaped cam 74
hertz 67
hides 199
hierarchy of sustainability 119
high density polyethylene 92
High Impact Polystyrene 92
high speed steel 90
hinges
plastic 187
wood 154
Honda ASIMO 255
housing 224
hydraulics 39
hydrocarbons 181
hydroelectric 35
hydrographic printing 198

I
inclusive design 18
industrial design 249
industrial revolution 2
injection moulding 195
ink jet card 83

innovation 266
input components 62
integrated circuit 64, 220
interfacing 97, 107
fusible 108
sew-in 108
interlocking 98
interviews 239, 254
intuitive design 256
investigation 238, 252
iron ore 163
ISO 134
isometric projection 261
Issigonis, Alec 249
iterative design 238, 255, 256

J
jig 125, 279
job roles 15
joint 158
joint overlap 275
Juicy Salif 253
Just In Time 11, 24

K
Kaizen 11
Kamikatsu 123
kerf 155
laser cutting 197
Kevlar 57, 58, 200
klin-drying 147
kinetic energy 40
Kinetic Energy Recovery System 40
Kirigami 137
knife edged follower 75
knitted yarns 98
knock-down fittings 153

L
lacquer 179
laminating 107, 138
paper 146
plastics 190
textiles 205
wood 148, 157
lamp 63
landfill 123
larch 86
Laser cutter 197
laser sintering 192
lathes 157
CNC 160, 177
metals 172
layout paper 82
LCD 46
LDR 62, 69
lead time 125
leaflet 141
lean manufacturing 11, 24
LED 63, 68
lever 71
classes 72
Life Cycle Assessment 8, 11, 27,
117, 183
line bending 190
linen 203
linkage 72
bell crank 73
crank and slider 73
parallel motion 73
push/pull 73
reverse motion 73
treadle 74
lithography 144
litmus paper 54
London Underground 245
low carbon steel 89
Low density Polyethylene 92
lubrication 233
LunaTik 5
LYCRA 95

M
machine screws 168, 186
Mackintosh, Charles Rennie 248
magnitude 71
mahogany 85
malleability 80
manufactured board 149, 160
manufactured timber 84
manufacturing specification 242
market
pull 14
research 25, 239
share 26
testing 258
marketability 267
marking out 135, 277, 278
mass production 126
material
costing 264
management 276
properties 80
protection 284
requirements 277
mathematical modelling 264
McQueen, Alexander 246
MDF 87, 148
flexible 44
measurements
human 240
measuring 277
mechanical advantage 71
mechanical devices 70
melamine formaldehyde 93
metal foam 48
metals 88
ferrous 88
non-ferrous 89
microcontroller 64, 68, 223
microencapsulation 59
microfibres 59
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>microns</td>
<td>134</td>
</tr>
<tr>
<td>MIG</td>
<td>174</td>
</tr>
<tr>
<td>mild steel</td>
<td>88</td>
</tr>
<tr>
<td>milling</td>
<td>173</td>
</tr>
<tr>
<td>CNC</td>
<td>177</td>
</tr>
<tr>
<td>metals</td>
<td>177</td>
</tr>
<tr>
<td>Mini</td>
<td>249</td>
</tr>
<tr>
<td>miniaturisation</td>
<td>120, 228</td>
</tr>
<tr>
<td>minimum wage</td>
<td>113</td>
</tr>
<tr>
<td>mining</td>
<td>115, 163</td>
</tr>
<tr>
<td>model construction</td>
<td>265</td>
</tr>
<tr>
<td>modelling</td>
<td>257, 264</td>
</tr>
<tr>
<td>CAD</td>
<td>265</td>
</tr>
<tr>
<td>card</td>
<td>265</td>
</tr>
<tr>
<td>toile</td>
<td>265</td>
</tr>
<tr>
<td>modifications</td>
<td>267</td>
</tr>
<tr>
<td>monomers</td>
<td>180</td>
</tr>
<tr>
<td>non-ferrous metals</td>
<td>88, 89</td>
</tr>
<tr>
<td>non-destructive testing</td>
<td>257</td>
</tr>
<tr>
<td>natural fibres</td>
<td>94</td>
</tr>
<tr>
<td>natural resources</td>
<td>7</td>
</tr>
<tr>
<td>nesting</td>
<td>277</td>
</tr>
<tr>
<td>net</td>
<td>110, 137</td>
</tr>
<tr>
<td>newsprint</td>
<td>132</td>
</tr>
<tr>
<td>nimby</td>
<td>34</td>
</tr>
<tr>
<td>Nitinol</td>
<td>51</td>
</tr>
<tr>
<td>Nomex</td>
<td>58, 200</td>
</tr>
<tr>
<td>non-destructive testing</td>
<td>257</td>
</tr>
<tr>
<td>non-ferrous</td>
<td>88, 89</td>
</tr>
<tr>
<td>non-finite resources</td>
<td>7</td>
</tr>
<tr>
<td>non-woven textiles</td>
<td>97</td>
</tr>
<tr>
<td>nuclear</td>
<td>34, 37</td>
</tr>
<tr>
<td>nuts</td>
<td>168</td>
</tr>
<tr>
<td>nylon</td>
<td>95, 200</td>
</tr>
<tr>
<td>polyamide</td>
<td>184</td>
</tr>
<tr>
<td>oak</td>
<td>85</td>
</tr>
<tr>
<td>oblique projection</td>
<td>261</td>
</tr>
<tr>
<td>offset lithography</td>
<td>144</td>
</tr>
<tr>
<td>oil</td>
<td>33</td>
</tr>
<tr>
<td>one-off production</td>
<td>124</td>
</tr>
<tr>
<td>open loop</td>
<td>60</td>
</tr>
<tr>
<td>ore</td>
<td>88, 163</td>
</tr>
<tr>
<td>oriented strand board</td>
<td>149</td>
</tr>
<tr>
<td>origami</td>
<td>137</td>
</tr>
<tr>
<td>orthographic projection</td>
<td>263</td>
</tr>
<tr>
<td>oscillating</td>
<td>264</td>
</tr>
<tr>
<td>motion</td>
<td>70</td>
</tr>
<tr>
<td>output</td>
<td>66</td>
</tr>
<tr>
<td>output components</td>
<td>63</td>
</tr>
<tr>
<td>outsourcing</td>
<td>283</td>
</tr>
<tr>
<td>oxidisation</td>
<td>89, 285</td>
</tr>
<tr>
<td>painting</td>
<td>162, 286</td>
</tr>
<tr>
<td>plastic</td>
<td>198</td>
</tr>
<tr>
<td>Pantone</td>
<td>144</td>
</tr>
<tr>
<td>paper</td>
<td>81</td>
</tr>
<tr>
<td>paper sizes</td>
<td>134</td>
</tr>
<tr>
<td>parallel motion</td>
<td>73</td>
</tr>
<tr>
<td>Paris agreement</td>
<td>118</td>
</tr>
<tr>
<td>parison</td>
<td>196</td>
</tr>
<tr>
<td>Parley</td>
<td>244</td>
</tr>
<tr>
<td>patent</td>
<td>5</td>
</tr>
<tr>
<td>patina</td>
<td>89</td>
</tr>
<tr>
<td>pattern</td>
<td>125, 279</td>
</tr>
<tr>
<td>fabric alignment</td>
<td>214</td>
</tr>
<tr>
<td>metal casting</td>
<td>173</td>
</tr>
<tr>
<td>repeat</td>
<td>279</td>
</tr>
<tr>
<td>PCB</td>
<td>216</td>
</tr>
<tr>
<td>PCB lacquering</td>
<td>233</td>
</tr>
<tr>
<td>PCL</td>
<td>184</td>
</tr>
<tr>
<td>pear cam</td>
<td>74</td>
</tr>
<tr>
<td>PEFC</td>
<td>150</td>
</tr>
<tr>
<td>people</td>
<td>13</td>
</tr>
<tr>
<td>percentiles</td>
<td>241</td>
</tr>
<tr>
<td>perforate</td>
<td>135</td>
</tr>
<tr>
<td>peripheral interface controller</td>
<td>65, 223</td>
</tr>
<tr>
<td>perspective</td>
<td>261</td>
</tr>
<tr>
<td>PH</td>
<td>54</td>
</tr>
<tr>
<td>PHB</td>
<td>43, 184</td>
</tr>
<tr>
<td>phenol formaldehyde</td>
<td>93</td>
</tr>
<tr>
<td>photochromic</td>
<td>50</td>
</tr>
<tr>
<td>photochromic particles</td>
<td>50</td>
</tr>
<tr>
<td>pigments</td>
<td>50</td>
</tr>
<tr>
<td>photoresist PCB</td>
<td>217, 231</td>
</tr>
<tr>
<td>PIC</td>
<td>65, 223</td>
</tr>
<tr>
<td>pick and place assembly</td>
<td>230</td>
</tr>
<tr>
<td>piezoelectric</td>
<td>53</td>
</tr>
<tr>
<td>pig iron</td>
<td>164</td>
</tr>
<tr>
<td>polymers</td>
<td>180</td>
</tr>
<tr>
<td>thermoforming</td>
<td>91</td>
</tr>
<tr>
<td>thermostetting</td>
<td>93</td>
</tr>
<tr>
<td>polymer seating</td>
<td>194</td>
</tr>
<tr>
<td>Polyform</td>
<td>48, 184</td>
</tr>
<tr>
<td>polypropylene</td>
<td>92</td>
</tr>
<tr>
<td>polyvinyl chloride</td>
<td>92</td>
</tr>
<tr>
<td>poplin</td>
<td>96</td>
</tr>
<tr>
<td>portfolio</td>
<td>259</td>
</tr>
<tr>
<td>potential energy</td>
<td>40</td>
</tr>
<tr>
<td>powder coating</td>
<td>179</td>
</tr>
<tr>
<td>power generation</td>
<td>32</td>
</tr>
<tr>
<td>Pozidriv</td>
<td>152</td>
</tr>
<tr>
<td>PPE</td>
<td>282, 287</td>
</tr>
<tr>
<td>presentation of data</td>
<td>241</td>
</tr>
<tr>
<td>Pressed chair</td>
<td>109</td>
</tr>
<tr>
<td>pressing</td>
<td>175</td>
</tr>
<tr>
<td>press stud</td>
<td>205</td>
</tr>
<tr>
<td>pressure switch</td>
<td>62</td>
</tr>
<tr>
<td>Primark</td>
<td>251</td>
</tr>
<tr>
<td>primary data</td>
<td>238</td>
</tr>
<tr>
<td>printing</td>
<td>145</td>
</tr>
<tr>
<td>3D</td>
<td>192</td>
</tr>
<tr>
<td>discharge</td>
<td>214</td>
</tr>
<tr>
<td>fabric</td>
<td>213</td>
</tr>
<tr>
<td>heat transfer</td>
<td>198, 215</td>
</tr>
<tr>
<td>hydrographic</td>
<td>198</td>
</tr>
<tr>
<td>mordant</td>
<td>214</td>
</tr>
<tr>
<td>resist</td>
<td>214</td>
</tr>
<tr>
<td>processing yarn</td>
<td>200</td>
</tr>
<tr>
<td>product analysis</td>
<td>239</td>
</tr>
<tr>
<td>production</td>
<td>124</td>
</tr>
<tr>
<td>batch</td>
<td>125</td>
</tr>
<tr>
<td>continuous</td>
<td>126</td>
</tr>
<tr>
<td>mass</td>
<td>126</td>
</tr>
<tr>
<td>one-off</td>
<td>124</td>
</tr>
</tbody>
</table>
product miles 117
properties
 physical 80
 working 80
prototype 4, 124, 192, 212, 265, 267
provenance 150
pulley 76
 block and tackle 76
pulp 130
Puma 20
punching 175
push/pull 73
push to break 62
push to make 62
PVC fabric 205

Q
quality control
 electronics 231
 metals 178
 papers and boards 144
 plastics 197
 textiles 214
 wood 161
Quant, Mary 246
Quantum Tunnelling Composite 52
quartz 53
quenching 177
questionnaires 239, 254
quilting 210
QWERTY 240

R
radioactive 34, 37
rag paper 81
recordings 264
recover 123
recycle 28, 111, 122
recycling
 batteries 219
 metals 165
 paper 131
 PCBs 219
 plastics 183
 primary 121
 secondary 121
 tertiary 122
 timber 87
reduce 120
redundancy 223
reel 204
refining 164, 180
refuse 119
registration marks 144
reinforcing 105
religious groups 20
renewable energy 34
repair 121
research 252
resin 193
resistors 221
resources
 finite 7, 33
 natural 9
 non-finite 7
rethink 120
reusable 28
reuse 121
reverse motion 73
RGB 143
Rietveld, Gerrit 248
rip-stop 96
risk assessment 283
rivet 106, 168
robotics 3, 23
roll
 paper 133
 roller follower 75
 rollers 131
Rossi, Aldo 248
rot 123, 285
rotary systems 74
rotational moulding 195
rough sawn 147, 151
routing 160
rubberising 198
rust 179, 285

S
safe working conditions 113
sanding
 metals 171
 plastics 189
 wood 156
sawing
 metals 171
 plastics 188
 wood 155
scales of production 124
schematics 262
score 110, 135
screen printing 213
screws 186
 machine 168
 wood 152
seals 140
seam allowance 275
seasoning 147
secondary data 239
second order lever 72
sectional view 263
selection of materials 270
self-healing polymers 52
selvedge 96
sensor 61
sewing 208
shale gas 33
shape memory alloy 51
shear force 104
shears 206
sheet
 metal 167
 paper 133
 plastic 182, 185
silk 95
sinkholes 115
SI units 277
six Rs 119
sizing 130, 145
sketching 257
slag 163
slash and burn 114
silvers 201
smart materials 49
snail cam 74
social
 challenge 244
 footprint 112
 media 5, 6
society 18
softwood 84, 86, 150
solar 35
soldering 225, 226
solid white board 83
solvent cement 193
Sottsass, Ettore 248
sources
 metals 163
 papers and boards 130
 polymers 180
 textiles 199
 timber 147
speaker 63
specification 242
spinning 200
sportswear 211
spot varnishing 146
spruce 86
stabilisers 182
stainless steel 90
stain protection 215
standard mouldings 152
staple fibres 200
Starck, Philippe 245, 253
static load 102
steam 32, 157
steel 88, 164, 176
stereolithography 192
stiffening 107
stiffness 104
stitching 208
stock forms
 metals 166
 papers and boards 133
 plastics 185
 textiles 204
 timber 151
strength 80
stress 102, 240
stripboard 216
strut 103
studding 166
subsystems 60
subtasks 60
surface
 mining 115
 mount technology 230
AQA GCSE (9-1) DESIGN AND TECHNOLOGY

I

surface (cont.)
preparation 286
treatments 284
sustainability 7
metals 165
papers and boards 131
plastics 182
textiles 202
timber 150
switches 62
synthetic fibres 95
systems 60
approach 255
closed loop 60
diagram 60, 262
open loop 60

T
tailstock 172
tallow 17
tanalising 161
tanning 199
technical textiles 56
technology
emerging 2
technology push 13, 26
tempering 177
template 125, 279
templier, raymond 248
tension 102
Tesla 229
tessellation 277
testing 257
Tetra Pak 142
textile design 246
textiles 94
animal-based natural fibres 95
animal sources 199
chemical sources 200
felt 97
mixed fibres 96
plant-based natural fibres 94
raw materials 199
synthetic fibres 95
vegetable sources 200
woven 96
thermal conductivity 80
thermistor 62
thermochromic pigments 49
thermoforming plastics 91, 181
thermosetting plastics 91, 181
third angle projection 263
third order lever 72
thread 167
throw 61
tidal energy 35
tie 103
Tiffany, Louis Comfort 249
TIG 174
timber
conversion 147
manufactured 84
natural 84
timer
555 65
tin 90
tissue paper 132
titanium 44, 48
tjanting 206
toggle switch 62
tole 265
tolerance
component 222
material 161
tools
marking and cutting out 279
specialist 281
tool steel 89
tooth pitch 155
torsion 103
Torx 152
toughness 80
tracing paper 82
trademark 5
transportation 117
treadle linkage 74
trends 15, 26
TTL 220
turbines 32, 37
turning 172
metals 177
wood 157, 160	warp 96, 98, 201
wax batik 206
weave
plain 96, 201	weft 96, 98, 201
weaving
commercial 212
webbing 107
WEEE 123, 219
wool 96, 98, 201
welding
metals 174
plastics 193
Westwood, vivienne 247
wood 156
wave soldering 231
wastage 123
wooden toys 159
wood joints 158
wood pulp 81
woodscrews 152
woven 96
working conditions 113
working drawing 263

U
Under Armour 251
underground mining 115
upcycle 121
updates 26
upgrades 26
urea formaldehyde 93, 194
user-centred design 254
UV degradation 285
UV exposure
PCB manufacture 232
UV varnishing 146

V
vacuum forming 191
vanishing point 261
varnish 162
Velcro 205
veneer 87, 148
verdigris 89
vinyl decals 198
virtual
marketing 6
retail 6
voltage 220

W
warp 96, 98, 201
Wassily Chair 247
waste
disposal 9
nuclear 34
reduction 11
wasting
metals 171
plastics 189
wood 156
wave soldering 231

weave
plain 96, 201	weft 96, 98, 201
weaving
commercial 212

webbing 107
WEEE 123, 219
wool 96, 98, 201
welding
metals 174
plastics 193
Westwood, vivienne 247
wood 34
wooden toys 159
wood joints 158
wood pulp 81
woodscrews 152
wool 96
working conditions 113
working drawing 263

Y
yarn 200, 201, 204

Z
Zara 251
zinc 90
zip 205
3.1 Core technical principles

New and emerging technologies

| 3.1.1 | New and emerging technologies | ✔ |

Energy, materials, systems and devices

3.1.2	Energy storage and generation	✔
3.1.3	Developments in new materials	✔
3.1.4	Systems approach to designing	✔
3.1.5	Mechanical devices	✔

Materials and their working properties

| 3.1.6 | Materials and their working properties | ✔ |

3.2 Specialist technical principles

Common specialist technical principles

3.2.2	Forces and stresses	✔
3.2.3	Ecological and social footprint	✔
3.2.7	Scales of production	✔

Specialist material areas

3.2.1	Selection of materials or components	✔
3.2.4	Sources and origins	✔
3.2.5	Using and working with materials	✔
3.2.6	Stock forms, types and sizes	✔
3.2.8	Specialist techniques and processes	✔
3.2.9	Surface treatments and finishes	✔

Materials covered in Units 5A-F

- ✔ Papers and boards
- ✔ Timber based materials
- ✔ Metal based materials
- ✔ Polymers
- ✔ Textile based materials
- ✔ Electronic and mechanical systems

The content in each section of the textbook covers the same specification points as the corresponding downloadable teaching unit, e.g. Section 1 complements Unit 1.
3.3 Designing and making principles

Designing principles

<table>
<thead>
<tr>
<th></th>
<th>Unit 1</th>
<th>Unit 2</th>
<th>Unit 3</th>
<th>Unit 4</th>
<th>Unit 5A</th>
<th>Unit 5B</th>
<th>Unit 5C</th>
<th>Unit 5D</th>
<th>Unit 5E</th>
<th>Unit 5F</th>
<th>Unit 5G</th>
<th>Unit 6</th>
<th>Unit 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.1</td>
<td>Investigation, primary and secondary data</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Environmental, social and economic challenge</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>3.3.3</td>
<td>The work of others</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Design strategies</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>3.3.5</td>
<td>Communication of design ideas</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Prototype development</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Making principles

<table>
<thead>
<tr>
<th></th>
<th>Unit 1</th>
<th>Unit 2</th>
<th>Unit 3</th>
<th>Unit 4</th>
<th>Unit 5A</th>
<th>Unit 5B</th>
<th>Unit 5C</th>
<th>Unit 5D</th>
<th>Unit 5E</th>
<th>Unit 5F</th>
<th>Unit 5G</th>
<th>Unit 5H</th>
<th>Unit 6</th>
<th>Unit 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.7</td>
<td>Selection of materials and components</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>3.3.8</td>
<td>Tolerances</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>3.3.9</td>
<td>Material management</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>3.3.10</td>
<td>Specialist tools and equipment</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>3.3.11</td>
<td>Specialist techniques and processes</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
This book provides detailed and concise coverage of all the topics covered in the new AQA 8552 Design and Technology (9-1) specification, written and presented in a way that is accessible to teenagers and easy to teach from. It can be used both as a course text and as a revision guide for students nearing the end of their course.

It is divided into 12 sections covering every element of the specification. Sections 5A to 5F of the textbook cover each of the specialist technical areas. These sections would complement practical classroom experience. Each chapter contains relevant questions and exercises from past papers, which can be set as homework. Answers to all these are available to teachers only, in a Teachers Supplement which can be ordered from our website.

www.pgonline.co.uk

About the author
Mike Ross has 16 years’ experience teaching Design and Technology in secondary schools in the state and private sectors. He has been Head of Technology for 13 years and has taught and overseen all Design and Technology disciplines at GCSE as well as A level Product Design for both Resistant Materials and Graphics specialisms. He has also taught Electronics at GCSE and A level. He has a BEd degree in Secondary Design and Technology Teaching.

Cover picture:
‘Stony Sunrise’
Paper and acrylic on masonite, 90x45x3cm © Amy Genser 2015
www.nummer40.com

This book has been approved by AQA.