
C
le

arR
evise

A
Q

A
 G

C
SE

 C
o

m
p

u
ter Scien

ce 8
5

2
5

ClearRevise

AQA GCSE
Computer
Science
8525

Experience + science + beautiful design = better results

Absolute clarity is the aim with a new generation of revision

guide for the 2020s. This guide has been expertly compiled and

edited by successful former teachers of Computer Science,

highly experienced examiners and a good measure of scientific

research into what makes revision most effective.

PG Online have a record of significantly raising and

sustaining examination results at GCSE in schools using their

award-winning teaching resources. This book aims to make an

even greater difference.

Past examination questions are essential to good preparation,

improving understanding and confidence. This guide has

combined revision with tips and more practice questions than

you could shake a stick at. All the essential ingredients for

getting a grade you can be really proud of.

Each specification topic has been referenced and distilled

into the key points to make in an examination for top marks.

Questions on all topics assessing knowledge, application

and analysis are all specifically and carefully devised

throughout this book.

Illustrated revision and practice:

• Over 500 marks of examination style questions

• Answers provided for all questions within the book

• Illustrated topics to improve memory and recall

• Specification references for each topic

• Examination tips and techniques

• Free Python solutions pack

ClearReviseTM

AQA GCSE Computer Science 8525

Illustrated revision and practice

ClearRevise™

AQA GCSE
Computer Science 8525

Illustrated revision and practice

Published by
PG Online Limited
The Old Coach House
35 Main Road
Tolpuddle
Dorset
DT2 7EW
United Kingdom

sales@pgonline.co.uk
www.pgonline.co.uk
2020

PREFACE
Absolute clarity! That’s the aim.

This is everything you need to ace your exam and beam with pride. Each topic is laid out in a beautifully
illustrated format that is clear, approachable and as concise and simple as possible.

Each section of the specification is clearly indicated to help you cross-reference your revision. The
checklist on the contents pages will help you keep track of what you have already worked through and
what’s left before the big day.

We have included worked examination-style questions with answers for almost every topic. This
helps you understand where marks are coming from and to see the theory at work for yourself in an
examination situation. There is also a set of exam-style questions at the end of each section for you to
practise writing answers for. You can check your answers against those given at the end of the book.

A free pack of over 30 Python solutions to accompany each of the programs listed in the book
are available to download from pgonline.co.uk.

LEVELS OF LEARNING
Based on the degree to which you are able to truly understand a new topic, we recommend that you
work in stages. Start by reading a short explanation of something, then try and recall what you’ve just
read. This has limited effect if you stop there but it aids the next stage. Question everything. Write down
your own summary and then complete and mark a related exam-style question. Cover up the answers if
necessary, but learn from them once you’ve seen them. Lastly, teach someone else. Explain the topic in
a way that they can understand. Have a go at the different practice questions – they offer an insight into
how and where marks are awarded.

ACKNOWLEDGEMENTS
The questions in the ClearRevise textbook are the sole responsibility of the authors and have
neither been provided nor approved by the examination board.

Every effort has been made to trace and acknowledge ownership of copyright. The publishers will be
happy to make any future amendments with copyright owners that it has not been possible to contact.
The publisher would like to thank the following companies and individuals who granted permission for
the use of their images in this textbook.

Design and artwork: Jessica Webb / PG Online Ltd
Photographic images: © Shutterstock

First edition 2020
A catalogue entry for this book is available from the British Library
ISBN: 978-1-910523-25-4
Copyright © PG Online 2020
All rights reserved
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means without the prior written permission of the copyright owner.

Printed on FSC certified paper by Bell and Bain Ltd, Glasgow, UK.

MIX
Paper from

responsible sources

FSC® C007785

®

ii ClearRevise

THE SCIENCE OF REVISION
Illustrations and words
Research has shown that revising with words and pictures doubles the quality of
responses by students.1 This is known as ‘dual-coding’ because it provides two ways of
fetching the information from our brain. The improvement in responses is particularly
apparent in students when asked to apply their knowledge to different problems.
Recall, application and judgement are all specifically and carefully assessed in public
examination questions.

Retrieval of information
Retrieval practice encourages students to come up with answers to questions.2 The
closer the question is to one you might see in a real examination, the better. Also, the
closer the environment in which a student revises is to the ‘examination environment’,
the better. Students who had a test 2–7 days away did 30% better using retrieval practice
than students who simply read, or repeatedly reread material. Students who were
expected to teach the content to someone else after their revision period did better still.3
What was found to be most interesting in other studies is that students using retrieval
methods and testing for revision were also more resilient to the introduction of stress.4

Ebbinghaus’ forgetting curve and spaced learning
Ebbinghaus’ 140-year-old study examined the rate in which we forget things over time.
The findings still hold power. However, the act of forgetting things and relearning them
is what cements things into the brain.5 Spacing out revision is more effective than
cramming – we know that, but students should also know that the space between
revisiting material should vary depending on how far away the examination is. A cyclical
approach is required. An examination 12 months away necessitates revisiting covered
material about once a month. A test in 30 days should have topics revisited every 3 days
– intervals of roughly a tenth of the time available.6

Summary
Students: the more tests and past questions you do, in an environment as close to
examination conditions as possible, the better you are likely to perform on the day. If you
prefer to listen to music while you revise, tunes without lyrics will be far less detrimental
to your memory and retention. Silence is most effective.5 If you choose to study with
friends, choose carefully – effort is contagious.7

1. Mayer, R. E., & Anderson, R. B. (1991). Animations need narrations: An experimental test of dual-coding hypothesis. Journal of
Education Psychology, (83)4, 484-490.

2. Roediger III, H. L., & Karpicke, J.D. (2006). Test-enhanced learning: Taking memory tests improves long-term retention.
Psychological Science, 17(3), 249-255.

3. Nestojko, J., Bui, D., Kornell, N. & Bjork, E. (2014). Expecting to teach enhances learning and organisation of knowledge in free
recall of text passages. Memory and Cognition, 42(7), 1038-1048.

4. Smith, A. M., Floerke, V. A., & Thomas, A. K. (2016) Retrieval practice protects memory against acute stress. Science, 354(6315),
1046-1048.

5. Perham, N., & Currie, H. (2014). Does listening to preferred music improve comprehension performance? Applied Cognitive
Psychology, 28(2), 279-284.

6. Cepeda, N. J., Vul, E., Rohrer, D., Wixted, J. T. & Pashler, H. (2008). Spacing effects in learning a temporal ridgeline of optimal
retention. Psychological Science, 19(11), 1095-1102.

7. Busch, B. & Watson, E. (2019), The Science of Learning, 1st ed. Routledge.

iii

Section 1

Computational thinking and programming skills - Paper 1

Specification

3.1.1 Representing algorithms ..2

3.1.1 Using flowcharts ...3

3.1.1 Using pseudo-code ..4

3.1.1 Inputs, processing and outputs ..5

3.1.1 Determining the purpose of an algorithm ...5

3.1.1 Using trace tables ...6

3.1.2 Efficiency of algorithms ..7

3.1.3 Searching algorithms ...8

3.1.3 Comparing and contrasting search algorithms ...9

3.1.4 Bubble sort ... 10

3.1.4 Merge sort ..11

3.1.4 Comparing bubble sort and merge sort ..12

 Examination practice ...13

CONTENTS

Section 2

3.2.1, 3.2.2 Variables, constants, assignments ...15

3.2.7 Input / output ...16

3.2.8 String conversion operations ..16

3.2.2, 3.2.3 Programming concepts ..17

3.2.2 Selection ...18

3.2.2 Iteration ...19

3.2.2 Condition controlled iteration ...20

3.2.6 Data structures ..21

3.2.6 Two-dimensional arrays ...22

3.2.8 String handling operations... 23

3.2.10 Structured programming and subroutines ... 24

3.2.9, 3.2.10 The structured approach ..25

3.2.11 Robust and secure programming ..26

3.2.11 Testing .. 27

 Examination practice ...28

iv ClearRevise

Section 3

3.3.1, 3.3.3 Number bases .. 34

3.3.1, 3.3.2 Binary ⇄ decimal conversion ... 35

3.3.1, 3.3.2 Hexadecimal ⇄ binary conversion .. 36

3.3.1, 3.3.2 Hexadecimal ⇄ decimal conversion ..37

3.3.1 Uses of hexadecimal ... 38

3.3.1, 3.3.2 Binary arithmetic ... 38

3.3.1, 3.3.2 Hexadecimal ⇄ binary conversion .. 39

3.3.1, 3.3.2 Hexadecimal ⇄ decimal conversion ..X

3.3.1 Uses of hexadecimal ..X

3.3.4 Binary arithmetic ..X

3.3.4 Binary shifts ...X

3.3.5 Character encoding ..X

3.3.6 Representing images ...X

3.3.7 Representing sound ...X

3.3.8 Data compression ...X

3.3.8 Huffman coding ...X

 Examination practice .. XX

Computing concepts - Paper 2

Section 4

3.3.1, 3.3.3 Hardware and software ..X

3.3.1, 3.3.2 Boolean logic ...X

3.3.1, 3.3.2 Constructing logic circuits ..X

3.3.1, 3.3.2 System software ...X

3.3.1 Utility software ..X

3.3.1 Application software ..X

3.3.1 Classification of programming languages ..X

3.3.1 Translators ...X

3.3.1 Systems architecture ..X

3.3.1 Common CPU components and their function ..X

3.3.1 CPU performance ..X

3.3.1 Main memory ..X

3.3.1 Secondary storage...X

3.3.1 Device operation ..X

3.3.1 Cloud storage ...X

3.3.1 Embedded systems ...X

 Examination practice .. XX

v

Section 6

3.6.1, 3.6.2 Cyber security threats ...X

3.6.2.1 Social engineering ...X

3.6.2.2 Malicious code (Malware) ..X

3.6.3 Methods to detect and prevent cyber security threats ..X

 Examination practice .. XX

Section 7

3.7.1 Database concepts ..X

3.7.1 Relational databases ...X

3.7.2 Structured query language (SQL) ..X

3.7.2 Using SQL to edit database data ..X

 Examination practice .. XX

Section 8

3.8 Ethical, legal and environmental impacts of digital technology on wider societyX

3.8 Legislation ..X

 Examination practice .. XX

 Examination practice answers ...XX

 Index ..XX

 Examination tips ... XX

MARK ALLOCATIONS
Green mark allocations[1] on answers to in-text questions through this guide help to indicate
where marks are gained within the answers. A bracketed ’1‘ e.g. [1] = one valid point worthy of
a mark. There are often many more points to make than there are marks available so you have
more opportunity to max out your answers than you may think.

Section 5

3.5 Networks ..X

3.5 Wired and wireless networks ...X

3.5 Topologies ...X

3.5 Network protocols ...X

3.5 TCP/IP layers...X

3.5 Encryption ...X

 Examination practice .. XX

vi ClearRevise

TOPICS FOR PAPER 1
COMPUTATIONAL THINKING AND
PROGRAMMING SKILLS

Information about Paper 1
Written exam: 2 hours
90 marks
50% of GCSE

Specification coverage

Computational thinking, code tracing, problem-solving,
programming concepts including the design of effective
algorithms and the designing, writing, testing and refining
of code.

The content for this assessment will be drawn from subject
content sections 3.1 and 3.2 of the specification.

Questions

A mix of multiple choice, short answer and longer answer
questions assessing programming, practical problem-solving
and computational thinking skills.

USING FLOWCHARTS

3.1.1

Flowcharts are a useful tool that can be used to develop solutions to a problem.
Standard flowchart symbols are shown below:

Look at the flowchart above.

(a) What will be output if the user enters 7, 50, 10 for the three values? [1]

(b) What will be output if the user enters an end number which is less than the start number? [1]

(a) 7, 17, 27, 37, 47[1]

(b) Nothing will be output.[1]

Flow line Input / Output Process

Decision Subprogram Terminal

START

INPUT startNumber,
endNumber, step

number
= startNumber

is number
<= endNumber?

OUTPUT number

number =
number + step

END

Yes

No

AQA GCSE Computer Science 8525 – Section 1 3

3.1.1

USING PSEUDO-CODE

Pseudo-code is useful for developing an algorithm
using programming-style constructs, but it is not an
actual programming language. This means that a
programmer can concentrate on figuring out how to
solve the problem without worrying about the details
of how to write each statement in the programming
language that will be used.

Using pseudocode, the algorithm shown in the
flowchart above could be expressed like this:

input startNumber, endNumber, step
set number to startNumber
while number <= endNumber
 output(number)
 add step to number
endwhile

AQA standard pseudo-code
AQA has published a standard version of pseudo-code. This is defined in a file that can be downloaded
from the AQA website. In an exam, where students are given pseudo-code, AQA will use the AQA
standard version.

You do not have to use the AQA style of pseudo-code in your own work, when answering questions or
describing algorithms. You will be awarded marks as long as your code is clear and consistent.
You should not use plain English or bullet points when describing algorithms.

Some questions in the exam specify that you must use either a flowchart, pseudo-code or a high-
level programming language you have studied to write or complete a program. Marks are awarded for
correctly using syntax to represent programming constructs, whichever language you use. Answers
written in pseudo-code, natural English or bullet points will not be awarded marks.

The algorithm shown above written in AQA standard pseudo-code
would be written:

startNumber USERINPUT
endNumber USERINPUT
step USERINPUT
number startNumber
WHILE number ≤ endNumber
 OUTPUT number
 number number + step
ENDWHILE

Note that if there are three
values to be input, when
writing your own pseudo-
code you should write three
separate INPUT statements.
Each INPUT statement is used
to input a single value and
assign it to a variable.

The problem with using a flowchart to develop
an algorithm is that it does not usually
translate very easily into program code.

4 ClearRevise

MERGE SORT
This is a very fast two-stage sort. In the first stage, the list is successively
divided in half, forming two sublists, until each sublist is of length one.

16 12 4 23 18 10 6 19

16 12 4 23 18 10 6 19

16 12 4 23 18 10 6 19

19610182341216

Step 1

Step 2

Step 3

Stage 1

At the end of stage 1, all the elements have been separated out.

In the second stage, each pair of sublists is repeatedly merged to produce new sorted sublists until there
is only one sublist remaining. This is the sorted list.

1. Write the list that results from merging the two lists 2, 5, 17, 38, 56 and 3, 4, 15, 19, 36 [1]

2. The following list is to be sorted using a merge sort algorithm.

(a) Describe the two stages of a merge sort algorithm. [4]

(b) Write out the list after Step 2 of the Stage 2 process. [2]

1. The list would be: 2, 3, 4, 5, 15, 17, 19, 36, 38, 56[1]

2. (a) Stage 1: The list is successively divided in half[1], forming two sublists[1], until each sublist is of
length one[1].
Stage 2: Each pair of sublists[1] is repeatedly merged[1] to produce new sorted sublists[1] until there is
only one sublist remaining[1].

 (b) Giraffe, Leopard, Monkey, Zebra,[1] Hippo, Rhino, Warthog[1]

Giraffe Zebra Monkey Leopard Hippo Warthog Rhino

4 6 10 12 16 18 19 23

4 12 16 23 6 10 18 19

12 16 4 23 10 18 6 19

19610182341216

Step 1

Step 2

Step 3

Stage 2

3.1.4

AQA GCSE Computer Science 8525 – Section 1 11

EXAMINATION PRACTICE
1. A pseudocode algorithm is given below.

01 aList [3,6,7,9,13,15,16,19,20,24,26,29,36]
02 found False
03 n 0
04 x USERINPUT
05 WHILE found = False AND n < len(aList)
06 OUTPUT (aList[n])
07 IF aList[n] = x THEN
08 found True
09 ELSE
10 n n + 1
11 ENDIF
12 ENDWHILE
13 IF found = True THEN
14 OUTPUT(x, n)
15 ELSE
16 OUTPUT("invalid number")
17 ENDIF

(a) At line 05, what is the value of len(aList)? [1]

(b) The user enters 9 at line 04. What is printed at line 06 the first 3 times the while…endwhile
loop is performed? [3]

(c) State what will be printed at line 14 if the user enters the number 9. [1]

(d) Explain the purpose of this algorithm. [2]

2. (a) An array names holds n items. An algorithm for a bubble sort is given below. [2]

01 swapMade True
02 while swapMade = True
03 swapMade False
04 for index 0 to n – 1
05 if names[index] > names[index + 1] then
06 swap the names
07 swapMade True
08 endif
09 next index
10 endwhile

(a) Explain the purpose of the variable swapMade in the algorithm. [2]

(b) Write the code for “swap the names” in line 06. [2]
(c) The list names contains the following:

 Write the contents of the list after each of the first two times the while…endwhile loop
is executed. [2]

(d) How many times will the while loop be executed before the program terminates?

 Explain your answer. [2]

SECTION 1

Edna Adam Victor Charlie Jack Ken Maria

13OCR GCSE Computer Science J277

1. The three branches of the estate agency are known as Branch A, Branch B and Branch C.

(a) Write code to output sales figure for Branch C for the period April–June. [1]

(b) What will be output? [1]

2. Write a program to ask a user to enter the name and five race times in seconds for each of 3
competitors, and display the average time for each competitor. [8]

1. (a) print(sales[2,1])[1] (b) 61[1]

2. name = ["","",""][1]

 totalTime = [0,0,0][1]

 averageTime = [0,0,0][1]

 raceTime = [[0,0,0,0,0],
 [0,0,0,0,0],
 [0,0,0,0,0]][1]

 for c in range(3):[1]

 name[c] = input("Enter competitor name: ")[1]

 for race in range(5):[1]

 raceTime[c][race] = int(input("Enter race time: "))[1]

 totalTime[c] = totalTime[c] + raceTime[c][race][1]

 averageTime[c] = totalTime[c] / 5[1]

 print("Average race Time for ",name[c], averageTime[c])[1]

3.2.6

TWO-DIMENSIONAL ARRAYS
An array may have two or more dimensions. A 2-dimensional array named sales could hold the number
of properties sold each quarter (Jan–March, April–June, July–September, October–December) by three
different branches of an estate agent.

The index for both row and column of the array starts at 0. The array is defined with the statement
array sales[3,4]. The number of properties sold in Quarter 4 by Agent 1 is held in sales[0,3]
and has the value 43.

Index 0 1 2 3

Three
branches

0 56 87 92 43

1 167 206 387 54

2 22 61 52 14

22 ClearRevise

THE STRUCTURED APPROACH
Decomposition of a problem involves breaking down a problem into
subroutines or modules. This helps to produce structured code.

The structured approach includes modularised programming using parameters and local variables.
Clear, well-documented code should include comments to explain what the code is intended to do.

• Makes debugging and maintaining the program easier as subroutines are usually no more than a
page of code and are separate from the main program

• Subroutines can be tested separately and shown to be correct

• A particular subroutine can be called several times in the same program, and may also be saved in
a subroutine library to be used in other programs

Python has a library of useful modules which can be imported into a program.

A subroutine may declare its own local variables, which exist only while the subroutine is
executing. They are only accessible within the subroutine. This is important because if the value of
a variable having an identical name in the main program is changed, this will not affect the local
variable in the subroutine.

Using subroutines in programs has many advantages

The randint() function generates a random number. To use it, you must first import the Python
library module random by writing the statement import random at the start of the program. Then, to
generate a random number num between a range of integers a and b:

num = random.randint(a,b)

Random numbers are often used in modelling. For example, suppose an ice cream van is visited by
between 100 and 500 people each day during a given period. The owner wants to model the total
number of customers, assuming a random number of customers in that range each day.

import random #import a library module
def totalFootfall(minCust, maxCust, days):
 totalCustomers = 0
 for day in range(days):
 dailyCustomers = random.randint(minCust, maxCust)
 print(dailyCustomers)
 totalCustomers = totalCustomers + dailyCustomers
 return totalCustomers

customers =
print ("Total customers for period: ",customers)

Generating a random number

Look at the code above. Complete the statement to call the
function totalFootfall() for a 30-day period. [2]
totalFootfall(100,500,30)[2]

3.2.9 3.2.10

25AQA GCSE Computer Science 8525 – Section 2

TOPICS FOR PAPER 2
COMPUTING CONCEPTS

Information about Paper 2
Written exam: 1 hour 45 minutes
90 marks
50% of GCSE

Specification coverage

Fundamentals of data representation, computer systems,
fundamentals of computer networks, cyber security, relational
databases and structured query language (SQL).

Ethical, legal and environmental impacts of digital technology
on wider society, including issues of privacy.

The content for this assessment will be drawn from subject
content sections 3.3 to 3.8 of the specification.

Questions

A mix of multiple choice, short answer, longer answer and
extended response questions assessing SQL programming
skills and theoretical knowledge.

3.3.4

BINARY SHIFTS
A binary shift moves all of the bits in a given binary number either to the left
or the right by a given number of places. All of the empty spaces are then
filled with zeros.

A shift of one place to the left will have the following effect:

A shift to the left will multiply a binary number by 2. Two shifts left would therefore multiply a
number by 4. Each shift right would divide a number by 2. Similarly, a shift left in decimal of the
number 17 becomes 170 and has therefore been multiplied by its base of 10.

An issue with precision occurs where odd numbers are divided since a standard byte cannot
represent fractional numbers. Consider the following shift of three places to the right:

The original binary value was equal to decimal 37. A right shift should divide this by 8 (or divide by 2,
three times). 37 / 8 = 4.625. However, the resulting binary converted to decimal is 4.

Effects of shifts

1. Complete a 2-place shift to the right on the binary number 11010110. [1]

2. Explain the effect of performing a right shift of two places on the binary number 11010110. [2]

3. Explain the effect of performing a left shift of 1 place on the binary number 11010110. [2]

1. 0011 0101[1]

2. Each shift right will divide the number by 2, so a two-place shift right will divide the number
by 4[1]. However, if the shift results in a 1 being lost at the right hand end, the results will lose
precision[1]. This is demonstrated in this question. 1101 0110 is 214 in decimal. Dividing that by 4
= 53.5. The shifted result 0011 0101 however is only 53 in decimal.

3. Shifting one place left multiplies the number by 2.[1] However this will cause overflow[1] for the
given number, as 9 bits would be needed for the result[1], which is greater than 255[1].

0 1 0 0 1 0 1 0

0 0 1 0 0 1 0 1

0 0 0 0 0 1 0 0

0 0 1 0 0 1 0 1

39AQA GCSE Computer Science 8525 – Section 3

REPRESENTING IMAGES
Similar to a mosaic, a bitmap image is made up of picture elements or pixels.
A pixel represents the smallest identifiable area of an image, each appearing as
a square with a single colour.

Number of colours
Colour
depth

2 colours 21 colours
1 bit per pixel

required

4 colours 22 colours
2 bit per pixel

required

8 colours 23 colours
3 bit per pixel

required

16 colours 24 colours
4 bit per pixel

required

The first symbol below is represented in black and
white using a series of binary codes. 0 = black and
1 = white.

Given that only 1 bit per pixel is available, only two
colours, black and white, can be represented.
The full image would have a size of 16 bits or 2
bytes. If the number of bits per pixel is increased,
more colours can be represented. In the second
example, four colours can be represented as the
colour depth (also known as bit depth), or bits
per pixel has been doubled to two.
This will also double the file size.

1. Study the coloured bitmap images above.

 (a) Give the binary representation for the top row of the second example. [2]

 (b) State the colour depth of an image if a palette of 256
colours per pixel was required. [1]

 (c) State the effect on file size on the first 4x4 pixel symbol above of increasing
the numbers of available colours to 256. [1]

 (a) 11 11[1] 11 00[1]. One mark per correct pair.

 (b) 8 bits per pixel.[1] (28 = 256)

 (c) The file size would increase[1] to 1 byte per pixel, or 16 bytes for the whole
icon, from 16 bits or 2 bytes[1].

0

0 0

0 0

000

1

1

1

1 1 1

1

1

11

10 10

01 10

100110

10

10

10

11 11 00

10

10

3.3.6

Colour depth

The size of an image is expressed as
width × height of the image in pixels,
for example 600 × 400px.

Image size

42 ClearRevise

HUFFMAN CODING

3.3.8

Huffman coding is a technique used to reduce the number of bits to represent
letter in a body of text. The more frequently a character appears, the fewer bits
are used to represent it and the higher up the tree it will appear.

This question uses the Huffman tree given above.

(a) State the coding for the word L,E,T. [3]

(b) Calculate how many bits these three letters would require using the Huffman code. [1]

(c) The sentence EVIL RATS STEAL LIVE PET is represented in a total of 79 bits.
Calculate how many bytes would be required to represent the sentence using ASCII. [1]

(d) Calculate how many bits are saved by compressing the sentence using Huffman coding
instead of ASCII. [1]

(a) 10, 01, 10[1], 11, 01, 00[1]

(b) 28 = 256[1]

(c) 3 Hz[1] (3 samples per second.)

(d) 8,000 samples per second, taken at 8 bits each = 64 kilobits / 8 = 8 kB x 3 seconds duration
= 24 kB.[1]

Example

Consider the sentence: EVIL RATS STEAL LIVE PET. The frequency that each letter in the sentence
appears is first recorded in a table.

A tree is then formed using the most
frequent letters nearer the top of
the tree. You will only be required to
interpret a tree. You will not need to
build one.

Using this tree, each character code is
derived from the route taken to it. Left is
0, right is 1. ‘A’ is therefore represented
as right, right, left, left or 1100. The word
‘RAIL’ would be encoded as 11110 1100
0111 010. This is 16 bits or 2 bytes. In
ASCII, ‘RAIL’ would be stored as 4 bytes
representing a 50% reduction in size.

Character Space E L V I A T S R P

Frequency 4 4 3 2 2 2 2 2 1 1

00 10 010 0110 0111 1100 1101 1110 11110 11111

0 1

0 1 0 1

0 1

0 1

0 1

0 1 0 1

0 1

E

A T S

R P

IV

L

Space

46 ClearRevise

HARDWARE AND
SOFTWARE

3.4.1

A computer system is made up of
hardware and software. Hardware is
any physical component that makes up
a computer. Software is any program
that runs on the computer. You can
touch hardware. You cannot touch
software.

Computer systems are all around us. They are not
just the PCs on the desk but include mobile phones,
cash machines, supermarket tills and the engine
management systems in a modern-day car.

BOOLEAN LOGIC

3.4.2

Computers are made of logic gates, transistors and switches which can be in one of two states:
on or off, 1 or 0. You need to know about four simple logic gates that are used in electronics. Each
is represented by a diagram and a truth table showing the possible outputs for each possible input.

Simple logic gates

An XOR gate represents the exclusive OR. The output is True, or 1, when either input is 1, but not
when both inputs are 1.

AND OR NOT XOR

A B P = A AND B A B P = A OR B A P = NOT A A B P = A XOR B

0 0 0 0 0 0 0 1 0 0 0

0 1 0 0 1 1 1 0 0 1 1

1 0 0 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0

A P
B
A P A

B
P

A
B

P

AND gate OR gate NOT gate XOR gate

48 ClearRevise

3.4.5

COMMON CPU COMPONENTS
AND THEIR FUNCTION

CPU component Function

ALU (Arithmetic Logic Unit)
Carries out mathematical and logical operations including AND, OR
and NOT, and binary shifts. It compares values held in registers

CU (Control Unit)
Coordinates all of the CPU’s actions in the fetch-decode-execute cycle
and decodes instructions. Sends and receives control signals to and
fetch and write data

Clock
The clock regulates the speed and timing of all signals and computer
functions

Registers
Even smaller and faster than cache memory, registers are built into the
CPU chip to temporarily store memory addresses, instructions or data.
They are used in the fetch-execute cycle for specific purposes

Bus
A collection of wires used to transfer data and instructions from one
component to another

Explain how increased cache
memory can improve the
performance of the Central
Processing Unit (CPU). [2]

Frequently used data or
instructions are stored in
cache[1] so that the CPU does
not need to fetch them from
RAM[1]. Cache is quicker for the
CPU to access than RAM.[1]

Types of memory

There are three types of memory. They all lose their contents when the power is switched off. Main
memory, (or RAM), is largest. Cache is expensive, relatively small, super-fast memory that is closer
to the CPU than RAM. It is used to hold recently used blocks of data or program instructions that are
likely to be needed again. Some CPUs have different levels of cache with level 1 being the smallest
and fastest. Registers are a special memory location on the CPU. They are even smaller and faster.

John von Neumann developed
the stored program computer.
The von Neumann architecture
involves storing both programs and
the data they use in memory.

57AQA GCSE Computer Science 8525 – Section 4

DEVICE OPERATION

3.4.5

Hard disk drives (HDD)

Explain why hard disk drives have been largely replaced by
solid state drives in portable devices. [4]

Hard disk drives have lots of moving parts[1] which can cause
problems if dropped or shaken[1]. The read/write head moves across
the disk and can scratch the disk irreparably if accidentally moved too
violently whilst in operation.[1] Moving the head across the disk to read
or write data reduces the access speed[1] that can be achieved with
solid state devices that have no moving parts. The cost and capacity
of solid-state storage is improving.[1]

SSDs look like a standard circuit board.
They use electrical circuits to persistently store data. These use
microscopic transistors to control the flow of current. One that allows
current to flow is a 1. Where current is block, a 0 is represented.

Solid state disks (SSD)

An optical drive uses a laser to reflect light off the surface of the
disk. Pits are burned into one long spiral track on the surface of the
disk. When the laser light hits the curved end of a pit, the light is
refracted and a 1 is recorded. Where light is reflected back directly
from the flat bottom of a pit, or from an area of the track with no pit
(a land) a 0 is recorded.

Optical drives

Drive spindle rotates disk. Moving parts
cause issues if dropped.

Iron particles on the disk are
magnetised to be either north or
south, representing 0 or 1.

Drive read/write head moves
into position, like a record
player. This movement takes
additional time.

Land
Pit

0001000100000001000000000001000

Pit

Magnetic platter stores data. Affected by
heat and magnetic fields.

62 ClearRevise

3.5

NETWORK SECURITY
Networks require security measures to prevent unauthorised access.
This ensures the privacy of data that is transferred within the network. Using a
combination of methods provides greater protection against threats.

Authentication

Authentication of an individual is used to make sure
that a person is who they say they are.

Most commonly, this is done by asking a user to
enter their ID and password or PIN. This is then
compared with the stored password on a database
to authenticate it. A simple authentication routine
is used when you log into a school network, or an
online shopping site.

Email confirmation is frequently used to confirm
that a user has access to the email address they may
have used to register with a website. An email with
an activation link or code is sent to the email address
that users can click to confirm they have access to
the email inbox.

Biometric methods of authentication include
optical, facial or fingerprint recognition. These use a
person’s physical features to confirm their identity.

Firewall

A firewall is a software or hardware
device that monitors all incoming and
outgoing network traffic. Using a set
of rules, it decides whether to block
or allow specific data packets. By
opening and closing ports, it can block
traffic from disallowed connections
from accessing the network, as well
as blocking communications from
the network, to make sure that only
authorised traffic is permitted.

MAC address filtering

A (Media Access Control) MAC
address is a unique hexadecimal
identification number assigned to
every Network Interface Card used in
networked devices. Whilst an IP address
can only get data to the Internet-facing
router on a network, the router can
then forward the data on to a specific
device within a network using its MAC
address.

MAC address: 30-A5-BD-6F-C4-63

A MAC address filter allows access
to, or blocks specific devices from,
accessing a network.

Explain how MAC address filtering is used
to restrict access to a network. [2]

The address of each device attempting
to connect to a network is looked up
in a predetermined list of addresses
allowed or denied by the router[1]. The
router then makes a decision.[1]

72 ClearRevise

3.7.1

RELATIONAL DATABASES
A relational database consists of two or more tables,
connected to each other through the use of a common field.

Each table will have a primary key field that uniquely
identifies each record in the table.

Example

In the Mission table below, the primary key is missionID.

missionID commander launchDate days moonLanding landingSite

Apollo 10 Thomas Stafford, Air Force 18/5/1969 8 No No landing

Apollo 11 Neil Armstrong, Civilian 16/7/1969 5 Yes Mare Tranquilitatis

Apollo 12 Charles Conrad, Navy 14/11/1969 5 Yes Ocean of Storms

Apollo 13 Jim Lovell, Navy 11/4/1970 6 No Aborted

Apollo 14 Alan Shepard, Navy 31/1/1971 6 Yes Littrow crater

Apollo 15 David Scott, Air Force 2/8/1971 12 Yes Censorinus crater

Apollo 16 John Young, Navy 16/4/1972 11 Yes Descartes Highlands

Apollo 17 Gene Cernan, Navy 7/12/1972 12 Yes Marius Hills

Skylab 2 Thomas Stafford, Air Force 25/5/1973 28 No No landing

Mission

Relationships

A mission can have only one commander, but a commander
can fly on many missions. This one-to-many relationship can be
represented using an entity relationship diagram:

Other possible examples of relationships are many-to-one, one-
to-one and many-to-many:

∞1
Commander Mission

1
Person Passport

∞
Author Book

∞

1

82 ClearRevise

Data inconsistency and data redundancy

The data in this database contains repeating fields or redundant data. Some astronauts (Thomas
Stafford) feature more than once in the table and therefore their details are unnecessarily repeated.
This repeated data is redundant data. The individual instances of this repeating data could also result
in inconsistency over time by updating different records with conflicting data for the same person,
for example.

A further problem with this table is that the name held in the commander field is not in a format that
can be easily searched. It actually holds three pieces of information. Each field in a database should
be atomic, holding only one piece of data, e.g. surname, firstname, military service.

To avoid data redundancy and inconsistency, each data item should be held just once. This involves
splitting the table into two – one for each entity or thing. In this case, the two entities are mission
and astronaut. A link is then created between them both.

The new tables would look like this. The primary key from the Astronaut table (astronautID) is
inserted into the Mission table. Here it is referred to as a foreign key.

missionID astronautID launchDate days moonLanding landingSite

Apollo 10 1001 18/5/1969 8 No No landing

Apollo 11 1002 16/7/1969 5 Yes Mare Tranquilitatis

Apollo 12 1003 14/11/1969 5 Yes Ocean of Storms

Apollo 13 1004 11/4/1970 6 No Aborted

Apollo 14 1005 31/1/1971 6 Yes Littrow crater

Apollo 15 1006 2/8/1971 12 Yes Censorinus crater

Apollo 16 1007 16/4/1972 11 Yes Descartes Highlands

Apollo 17 1008 7/12/1972 12 Yes Marius Hills

Skylab 2 1001 25/5/1973 28 No No landing

astronautID firstname surname militaryService

1001 Thomas Stafford Air Force

1002 Neil Armstrong Civilian

1003 Charles Conrad Navy

1004 Jim Lovell Navy

1005 Alan Shepard Navy

1006 David Scott Air Force

1007 John Young Navy

1008 Gene Cernan Navy

Mission

Astronaut1. The table Misson records
Apollo moon missions.

(a) Suggest a suitable data
type for the data in the
moonLanding field. [1]

(b) Explain why missionID is
the only suitable field for
the primary key. [2]

(a) Boolean.[1] (b) missionID
is the only field which
contains data that will
always be unique.[1] It would
be possible for all data in
other fields to be repeated[1]
in other missions to the
same sites, on the same
days or using the same
astronauts.

2. Suggest a suitable
relationship type for the
entities car and owner. [1]

 Many to one.[1]

83AQA GCSE Computer Science 8525 – Section 7

3.8

ETHICAL, LEGAL AND ENVIRONMENTAL
IMPACTS OF DIGITAL TECHNOLOGY ON
WIDER SOCIETY
Any advancement or implementation of a technology may introduce new
ethical, legal, environmental and privacy issues.

Cyber security and hacking

Hacking means unauthorised access to programs
or data. The growing use of communications
technologies has vastly increased the volume of
sensitive data that is sent electronically. People need
to be increasingly careful with the data they send,
and think about how they can avoid cyber threats.
Software and hardware can be put in place to prevent
hacking (unauthorised access).

Encryption is commonly used to secure data, but
cyber criminals are also using the same security
methods to protect their data from governments and
law enforcement agencies. Should security services
have access to everyone’s encrypted data in order to
protect the majority from the few?

Some governments argue that they should
have access to all encrypted data sent to or
from their citizens. Discuss how this might
impact governments and citizens. [4]

Governments would have greater
control over the protection of their
citizens[1] if they are able to analyse
communications that may relate to
planned criminal activity or acts of
terrorism[1], for example. Citizens value
their privacy[1] and may not like the fact
that governments may be ‘watching’
or ‘reading’ their messages, emails and
other communications.[1]

Mobile technologies

Mobile technologies such as smartphones and laptops switch from one
network to another almost seamlessly as they roam through various regions.
Any data sent through these networks needs to be secure. An unprotected
network connection can allow a hacker to intercept any data, including
passwords, online shopping data and bank details. Phishing scams are
increasingly happening via SMS messaging instead of standard email.

Police have access to mobile phone cell data. This can effectively be used to
track the movement of a phone. Like a breadcrumb trail, each time a phone
makes contact with the nearest mobile mast it gives away its location. This data,
and the communications to and from a device, are commonly used in crime
prevention and as evidence in legal cases.

Wireless networking

Users of an unsecured
connection should be very wary
of what data they are sending.
There may be eavesdroppers
within the network looking to
capitalise on sensitive data that
may be sent.

87AQA GCSE Computer Science 8525 – Section 8

EXAMINATION PRACTICE ANSWERS
Section 1

1. (a) 13 (the number of items in the list) [1]

(b) 3 6 7 [3]

(c) 9 found at position 3 (item 9 is the 4th in the list, counting from 0) [1]

(d) It performs a linear search on the list for an item entered by the user. If the item is not found, it prints “Invalid number). [2]

 Download the program solutions in Python from www.pgonline.co.uk

2. (a) It acts as a ‘flag’ which is set to False when a pass through the list is made and no items are swapped, meaning that
the list is now sorted. [2]

(b) temp = names[n]
names[n] = names[n+1]
names[n+1] = temp [3]

(c) Adam Edna Charlie Jack Ken Maria Victor

Adam Charlie Edna Jack Ken Maria Victor [2]

(d) 3 passes. Swaps are made on the first two passes. The list will be sorted after the second pass, and on the third pass,
no swaps are made, so swapMade is set to False and the while loop terminates. [2]

3. (a) Algorithmic thinking [1]

(b) Decomposition [1]

(c) Abstraction [1]

4. (a) [4]

(b) It calculates the average of the numbers input by the user. [1]

num a b ans

0 0 0

3 3 1 0

8 11 2 0

2 13 3 0

5 18 4 0

–1 4.5

Section 2

1. (a) String (b) Boolean (c) integer (d) real/float [4]

2. (a) line 02. [1]

(b) Should be: height = float(input()) [2]

(c) Line 03 [1]

(d) if height < 1.2: [1]

3. (a) False (n.b. do not accept “False” – this is a Boolean variable, not a string) [1]

(b) 1 [1]

(c) 5 [1]

4. (a) not("7" in str(count)) (Tip: you must convert the integer 7 and the integer count to strings) [3]

(b) for count in range (100):
 if not("7" in str(count))and not(count mod 5 == 0):
 print (count)
 (or, if not("7" in str(count))and (count mod 5 != 0): [3]

93AQA GCSE Computer Science 8525 – Answers

Mark Band 3 – High Level (6–8 marks)

• Technical terms have been used precisely

• The answer is logical and shows an extensive understanding of Computer Science concepts,
and principles

• The answer is almost always detailed and accurate

• All parts of the answer are consistent with each other

• Knowledge and ideas are applied to the context in the question

• Where examples are used, they help with understanding the answer

• Arguments and points are developed throughout the answer with a range of different
perspectives. Different sides of a discussion are considered against each other

Mark Band 2 – Mid Level (3–5 marks)

• The meaning of technical terms in the question has been understood

• The answer shows an understanding of Computer Science concepts

• Arguments and points are developed in the answer, but sometimes useful examples or related
knowledge to the context have not been included

• Some structure has been given to the answer with at least one line of reasoning

• Sound knowledge has been effectively shown

Mark Band 1 – Low Level (1–2 marks)

• The answer shows that technical terms used in the question have not been understood

• Key Computer science concepts have not been understood and have not been related to the
context of the question

• The answer is only loosely related to the question and some inaccuracies are present

• Gaps are shown in Computer Science knowledge

• The answer only considers a narrow viewpoint or one angle

• The answer is unstructured

• Examples used are mostly irrelevant to the question or have no evidence to support them

0 marks

• No answer has been given or the answer given is not worth any marks

BAND DESCRIPTIONS AND LEVELS OF
RESPONSE GUIDANCE FOR EXTENDED
RESPONSE QUESTIONS
Questions that require extended writing use mark bands. The whole answer will be marked together to
determine which mark band it fits into and which mark should be awarded within the mark band.

The above descriptors have been written in simple language to give an indication of the expectations of
each mark band. See the OCR website at www.ocr.org.uk for the official mark schemes used.

102 ClearRevise

1. Read questions carefully as some students give answers to questions they think are appearing rather than the

actual question.

2. In calculation questions, marks are often given for working. Students should make sure to show their working in

case they make a mistake and the answer is incorrect.

3. Algorithms can be given as pseudo-code or flowcharts unless the question explicitly states otherwise. If you

make a mistake when drawing flowchart symbols, you are unlikely to be penalised unless you make the

algorithm unclear.

4. Arrows coming out of decision symbols must be labelled to make an algorithm clear.

5. If candidates need to produce pseudo-code, then string ← USERINPUT will count as two statements – one for

collecting user input, one for the assignment – this line of code may therefore be worth two marks.

6. Students may be asked to explain why one algorithm is better than another – for example, for a sorting

algorithm. ‘Quicker’ and ‘faster’ are not acceptable answers. They must explain why the algorithm is quicker or

faster to gain a mark.

7. This is also the case in programming code. If a more efficient code change is made, it is not acceptable to

describe the improvement as ‘faster’ or ‘uses less storage’ unless there is an explanation of why this is the case.

8. When drawing logic gate diagrams, students often use the incorrect symbols for gates.

9. If students are asked for an explanation of issues as they affect an organisation, many will give how they affect an

individual rather than the organisation which limits marks available. Again, care needs to be taken with reading

the question closely.

10. When performing binary arithmetic, students can use any method they wish – for example, if they wish, convert

to decimal, perform the addition, then convert back, alternatively they can do the addition directly in binary

which is often faster.

The same applies for converting numbers between hexadecimal to binary where students, if they wish, can

convert from hex to decimal and then to binary.

11. Common misconceptions about ROM are that it is usually used to store application software or that there is

typically more ROM than RAM. Both these are incorrect.

12. Students should be careful with vague answers. For cloud storage benefits it is not acceptable to write that it ‘has

more space’ or ‘costs less’. Correct answers would be ‘it allows access to a larger amount of storage capacity’ or

‘it allows the purchase of a cheaper computer with less storage capacity’.

13. When giving the differences of WANs and LANs many students will say that ‘WANs are larger’. This isn’t

acceptable. They need to say that a WAN links one remote geographical site/location to another.

14. Many students, especially weaker ones, do not have their answers match the context of the question. For

example – a travel agent that stores customer and business data electronically and needs to prevent infections

from malware. Some students would mention keeping records on paper or disconnecting computers from the

network. These would help to prevent infections but are not appropriate for the type of business and therefore

are not given marks.

With your examination practice, use a boundary approximation using the following table. Be aware that
boundaries are usually a few percentage points either side of this.

EXAMINATION TIPS

Grade 9 8 7 6 5 4 3 2 1

Boundary 90% 80% 75% 65% 60% 50% 35% 25% 15%

106 ClearRevise

