MathsPractice

Edexcel GCSE Mathematics 1MA1

Foundation

Step-by-step guidance and practice

Published by
PG Online Limited
The Old Coach House
35 Main Road
Tolpuddle
Dorset
DT2 7EW
United Kingdom

PREFACE

A crisp, clear and accessible guide to every maths topic, this is everything you need to ace the three exams in this course and beam with pride. Each topic is clearly presented in a format that is clear, approachable and as concise and simple as possible.
Each section of the specification is clearly indicated to help you cross-reference your revision. The checklist on the contents pages will help you keep track of what you have already worked through and what's left before the big day we have included worked example questions with answers for each objective. This is followed by a series of related questions that gently increase in their level of challenge. You can check your answers against those given at the end of the book.

THE SCIENCE OF LEARNING AND REVISION

Variation theory

Procedural variation is the gradual change from one question to the next, in order to subtly increase difficulty. It focuses on not only what changes, but on what does not change. This enables misconceptions and misunderstandings to be identified more easily when only one variable is altered. Seeing these differences, rather than seeing sameness, better enables pupils to reason and make connections.

Retrieval of information

Retrieval practice encourages students to come up with answers to questions. ${ }^{2}$ The closer the question is to one you might see in a real examination, the better. Also, the closer the environment in which a student revises is to the 'examination environment', the better. Students who had a test 2-7 days away did 30% better using retrieval practice than students who simply read, or repeatedly reread material. Students who were expected to teach the content to someone else after their revision period did better still ${ }^{3}$ What was found to be most interesting in other studies is that students usin else

Ebbinghaus' forgetting curve and spaced learning

Ebbinghaus' 140 -year-old study examined the rate in which we forget things over time. The findings still hold true However, the act of forgetting things and relearning them is what cements things into the brain. ${ }^{5}$ Spacing out revision is more effective than cramming - we know that, but students should also know that the space between revisiting materia away necessitates revisiting covered material about once a month. A test in 30 days should have topics revisited every 3 days - intervals of roughly a tenth of the time available.

Summary

Students: the more tests and past questions you do, in an environment as close to examination conditions as possible, the better you are likely to perform on the day. If you prefer to listen to music while you revise, tunes without lyrics will be far less detrimental to your memory and retention. Silence is most effective. ${ }^{5}$ If you choose to study with friends, choose carefully - effort is contagious.

ACKNOWLEDGMENTS

Every effort has been made to trace and acknowledge ownership of copyright. The publishers will be happy to make any future amendments with copyright owners that it has not been possible to contact. The publisher would like to thank the following companies and individuals who granted permission for the use of their images in this textbook.

Desinn and atwork Miene Bloys and lessica webb PG Onine Led
Photograohic images: © Shutterstock
First edition 2021. 10987654321

A catalogue entry for this

ISBN: 978-1-910523-16-2
Copyright © Belle C
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any for on PSC certified paner without the prior written permission of the copyright owne


```
Psychological Science, 17(7).249-255.
```



```
Smith.A.M. Floerte V. A., G. Thomas A. . . 2016) Retrieval pracice protects memorn aginst acute stress. Scienee
M54(6315)
```



```
Mological ccience, 19(11),1095-1102.
Busch, B. & Watson, E. (2019).TTe Science of Leaming, 1sted. Routledge
```


CONTENTS AND CHECKLIST

Section 1 Integers

Specification	
N1, N2	Integers and place value.. 2
N1, N2	Negative integers.
N1, N2	Calculating with negative integers...................................... 6
N2	
N2	
N3	Priority of operations ... 10

Section 2 Primes, factors and multiples

Section 3 Algebraic expressions

3.1	A1, A3, A21	
3.2	A2, A7	Expressions as functions.. 24
3.3	A4	
3.4	A17, A21	
3.5	A2, A5	Simple formulae .. 29
3.6	A4	Brackets and common factors....................................... 30
3.7	A4	

Section 4 Decimals

4.1	N1, N2	Decimal place value .. 33
4.2	N1, N2	Calculating with decimal numbers 35
4.3	N15	Rounding and decimal places... 36
4.4	N15	
4.5	N2, N14	Multiplying decimal numbers ... 39
4.6	N2, N14	Dividing decimal numbers... 41

Section 5 Measures

5.1	N14, N15	
5.2	R2, G15, (N13)	Scale diagrams .. 44
5.3	G15, (R2)	
5.4	G13	Plans and elevations.. 47
5.5	G4, G14, (A5)	
5.6	G14, G16, (A5), (A17), (A21)	Area of simple shapes .. 50

Section 6 Fractions

6.1	N1, R3	Equivalent fractions	53
6.2	N1, N8, R3	Proper and improper fractions	55
6.3	N2, N8	Adding and subtracting fractions.	56
6.4	N2, N8	Mixed numbers.	.. 58
6.5	N2, N8	Multiplying fractions.	.. 60
6.6	N2, N8	Dividing fractions.	62

Section 7 Straight line graphs

7.1	A8	
7.2	A9	
7.3	A9	
7.4	A9, A17	
7.5	A9, A10, A12	
7.6	A9, A10, A12	
77	A9, A10, A12	

Section 8 Fractions, decimals, and percentages

8.1	N10	Decimals to fractions..	77
8.2	N10	Fractions to decimals..	79
8.3	R9	Percentages 1.	... 81
8.4	R9, N12	Percentages 2.	82
8.5	R9, N12	Problems involving percentages..	... 84
8.6	R9, (N12)	Percentage increase..	... 86
8.7	R9, (N12)	Percentage decrease.	... 87

Section 9 Probability

P3
9.2 P2, P6, P7, N5
$9.3 \quad$ P2, P3, P7
9.4 P1, (P6)
9.5 P1, (P2), P3, P5

6 P4
$9.7 \quad \mathrm{P} 2, \mathrm{P} 7$
Section 10 Ratio
10.1 R4, R6, R8, N11
10.2 R5
10.2
10.3 R5, R6, R10
10.4 R1, (R2), (R5), R10
10.5 R8, R14
10.6 R2, G15

Measuring probability \qquad $\square \square$
Listing systematically $92 \square$
Theoretical probability... $92 \square$ Experimental data... $.93 \square$
Probability experiments ...
95
97
\square
Mutually exclusive outcomes. \qquad
Combined experiments and outcomes..
\qquad
Dividing in a given ratio
$100 \square$
Dividing in a given ratio

Solving problems with ratio
104
Ratio as a linear function
$106 \square$
Map scales
108

Section 11 Shapes and transformations

Section 12 Sequences

12.1	(A7), A23	
12.2	A23, A24, A25	
12.3	A24	Special sequences... 123
12.4	A24	Geometric sequences .. 127
12.5	A23, A24, A25	Quadratic sequences.. 128
12.6	A22	Inequalities... 129
12.7	A22	Solving linear inequalities.. 131
Section 13 Proportion		
13.1	R5, R10, A14	Conversion of currency... 133
13.2	R1, R7, (R10), R11, (A9), A14	Best buy problems .. 135
13.3	N13, G14, R1	
13.4	N13, G14, R1	Units of time.. 139
13.5	N13, R1, R10	Metric and imperial conversions.................................. 140
13.6	R5, R10	Direct proportion problems... 142

Section 14 Data

$14.2 \quad$ S2
14.3 S4
$\begin{array}{ll}14.4 & \text { S4 } \\ 145 & \text { S4 }\end{array}$
14.5 S4

147 (S2), (S4) S
Categorical and discrete data.
$144 \square$
\qquad ata, charts and graphs.. 147 Con mous dan … $150 \square$Estimating averages

Comparing pams and 156

Section 15 Properties of shapes

15.1	G4	
15.2	G6, G11, A8	Tessellations .. 162
15.3	G6, G11, A8	
15.4	G9, G17, (A5)	Circumference.. 166
15.5	G9, G17, (A5)	
15.6	G1, G12, (G13)	
15.7	G1, G12	

15.7 G1, G12
.171

Section 16 Applications of number

16.1	R9, (N12)		\square
16.2	R9, (N12)		\square
16.3	R1, R11, (N13)	Speed.. 176	\square
16.4	R1, R11, (N13)	Compound measures... 178	\square
16.5	N9	Standard form... 179	\square
16.6	N9	Calculating with standard form................................ 181	\square
Section 17 Further graphs			
17.1	R11, R14, A10, (A12), A14	Real life graphs ... 183	\square
17.2	A11, A12, (A14)	Quadratic functions.. 186	\square
17.3	A11, A12, (A14), A18	Quadratic graphs... 188	\square
17.4	A12, A14, R10, R13	Reciprocal and cubic graphs... 190	\square
17.5	A19, (A14)	Solving simultaneous equations graphically....................... 192	\square
Section 18 Geometry			
18.1	(G1), G2	Constructions ... 194	\square
18.2	G2		\square
18.3	G5, G6, G19	Congruence... 198	\square
18.4	G6, G19, R12	Similarity.. 200	\square
18.5	G20, (N7), (A5)	Pythagoras' theorem... 202	\square
18.6	(G3), G6	Geometric proofs... 204	\square

Section 19 Equations and identities

19.1	A4, A17, A21	Knowledge check.	. 206
19.2	A17	Harder linear equations	. 208
19.3	A4	Product of two binomials...	. 210
19.4	A4	Factorising quadratics	211
19.5	A3, A6	Identities.	213
19.6	A3, A6	Proving identities	214
19.7	A21	Solving algebraic problems	215
Section 20 Trigonometry			
20.1	G20, R12	Ratios in similar shapes	217
20.2	G20, R12	Trigonometric ratios.....	.. 219
20.3	G20, (R12)	Using trigonometric ratios.	.. 221
20.4	G20, (R12)	Trigonometry in context.....	.. 223
20.5	G20, G21	Special angles......	. 225
20.6	G20, G21	Trigonometry	

FOUNDATION TIER

Mathematics (1MA1)

This qualification is assessed over three examination papers.

Specification coverage

The content for assessment in each paper will be drawn from each of the six areas of mathematics

1. Number
2. Algebra
3. Ratio, proportion and rates of change
4. Geometry and measures
5. Probability
6. Statistics

Assessment

Three written exams: 1 hour 30 minutes

Each 80 marks

All questions are mandatory
Each paper is 33.33% of the qualification grade
Calculators are permitted in Papers 2 and 3 only

Assessment overview

Each paper will consist of a range of question types.
The total mark across the three equally weighted Foundation tier papers is used to form a combined GCSE grade from 1 to 5 .

SECTION 1

INTEGERS

3. Tom has five numbered cards.

$\begin{array}{llllll}3 & 4 & 7 & 1 & 9\end{array}$

a) Write down the largest number that he can make using all the cards once only
b) Write down the largest possible number less than 50000 , that he can make using all the cards once only.
c) Write down the smallest possible number that is greater than 20,000 that he can make using all the cards once only.
4. Jodie has tried to write these numbers in ascending order. She has made mistakes. Spot the mistakes and correct them a) $4443,30400,44104,44033,400300$
b) $280880,28888,208088,8882,888$
5. Here is a map of the British Isles showing the temperatures on 1st December.
ist the temperatures in ascending order

6. A three-digit number has a tens digit which is two times as big as its hundreds digit. It has a zero units digit. Write down the possible numbers it could be

A three-digit number has one repeated digit. Its digits are all prime numbers. It is an even number greater than 700 Write down the possible numbers it could be.

Use these clues to find the missing number.

- There is a 2 in the ten thousand and tens place
- The units digit is 3 times the digit in the ten thousand place
- The digit in the thousands place is 2 less than 5
- The digit in the hundred thousand place is 2 more than half of the units digit.
- The digit in the tens place is 2 more than the digit in the hundreds place.

Numbers are written on four cards as shown below. Two of the cards are blank.
$280350247350238350258350 \square$
a) Choose numbers to write on the blank cards so that the six cards can be used to complete a number pattern
b) Write the six numbers in ascending order

A three-digit number has digits which are ascending consecutive numbers Another three-digit number has digits which are descending consecutive numbers. The difference between the two numbers is 24 .
What are the two numbers?

1.2 NEGATIVE INTECERS

Objectives

Add and subtract positive and negative integer

Adding and subtracting integer

A number ine can help when adaing and subtracting integers.
Move up the line when adding and down the line when subtracting a positive number.

add positive numbers									
-4	-3	-2	-1	0	1	2	3	4	
subtract positive numbers									
ing a negative number is the same as subtracting a positive number. tracting a negative number is the same as adding a positive number.						$\begin{array}{ll}\text { e.g. } & -5+(-8)=-5-8=-13 \\ \text { e.g. }-5-(-8)=-5+8=3\end{array}$			

Use a calculator to evaluate arithmetic operations involving positive and negative integers

Calculator

A calculator can be used to check an answer is correct.
ou do not have to put brackets around negative
e.g. $-124--213=89$
able shows the temperatures
vo different cities on a Monday.
Work out the difference in $7^{\circ} \mathrm{C}$
emperature between Athens
and Oslo on that Monday.
Difference in temperature Oslo $\quad-14^{\circ} \mathrm{C}$
$=7+14$
$=21^{\circ} \mathrm{C}$

Practice questions

1. Work out the answers to these without a calculator
a) $13-20$
b) $-10+18$
c) $-10-2$
d) $8-20$
e) $-6-4$
f) $-4+1$
g) $-7+9$
h) $-21+10$
2. Work out the answers to these without a calculator
a) $13+-7$
b) $-10+-1$
c) $-15+-2$
d) $10+-20$
e) $-12--3$
f) $4-+1$
g) $9--7$
h) $-31--8$
3. Work out the answers to these using a calculator
a) $137+-198$
b) $-509-237$
c) $-2489--379$
d) $-3478-+9691$
4. Place two or three of the numbers $7,-11$ and -3 into each of of the following, to make the calculation correct.
a) $-\ldots-{ }^{-}+\ldots-{ }^{-}=4$
b) \qquad
\qquad $=18$
c) ____- - ____- =-8 \square
\qquad --_-_ = 1
5. Tom says that $-10-24=34$. By referring to a number line, give a reason why Tom is wrong. Give the correct answer to the calculation
6. At 6 pm the temperature is $2^{\circ} \mathrm{C}$. By midnight the temperature drops to $-8^{\circ} \mathrm{C}$. By how many degrees did the temperature fall?
7. Work out the missing numbers in each calculation

Use a calculator to check your answers.
a) $297+\ldots-{ }_{\text {a }}=129$
b) $1032+\ldots---=1006$
d) $+-762=-210$
c) $-\ldots-+-358=1008$
8. The table shows the surface temperatures of different planets.

	Minimum surface temperature (${ }^{\circ} \mathbf{C)}$	Maximum surface temperature (${ }^{\circ} \mathbf{C)}$
Mercury	-170	449
Mars	-125	20
Earth	-89	58

a) What is the difference between the minimum temperatures on Mercury and on Earth?
b) What is the temperature difference on Mars?
c) Which planet has the greatest temperature difference? What is it?
. In a magic square all the rows, columns and diagonals add up to the same total. Complete the magic square

10. In an addition pyramid each number is the sum of the two numbers beneath it Copy and complete these addition pyramids.

b)

c)

13 CALCULATING WITH NEGATIVE INTEGERS

1.4 MULTIPLICATION

Objectives

Understand and use the terms sum, difference, product, quotient

Sum, difference, product, quotient
The sum of two numbers is obtained by adding them. e.g. the sum of 11 and 8 is 19 The difference of two numbers is obtained by subtracting them. e.g. the difference of 15 and 8 is 7 The product of two or more numbers is obtained by multiplying the numbers together. e.g. the product of 2 and -3 is -6 The quotient of two numbers is obtained by dividing one number by the other. e.g. the quotient of 12 and -3 is -4

Use non-calculator methods to complete multiplications

Non-calculator methods for multiplication

The grid method is one example of a non-calculato
 method for multiplication, e.g. work out 34×26
 Traditional long multiplication method is anothe example, e.g. work out 34×27

34
$\begin{array}{r}34 \\ \times 27 \\ \hline 238 \\ 2 \\ 680 \\ \hline 1 \\ \hline\end{array}$
918
So $34 \times 27=918$

Practice questions

1 Work out the sum of these numbers:
a) 11 and 23
b) -1 and 1
c) 105 and 24
d) -6 and -2
2. Work out the difference between these numbers:
a) 12 and 5
b) 3 and 9
c) -5 and 7
d) 6 and - 6
3. Here is a list of numbers: $-60,-25,-9,-5,10,18$

Choose two numbers from the list so that:
a) their product is -250
b) their quotient is 5
c) their quotient is the largest positive intege
4. Use a non-calculator method to work out the following calculations.

Show your working.
a) 34×19
b) 25×14
C) 18×103
d) 124×22

3.7 POWERS AND ROOTS

SECTION 4

Objectives

Use index notation and the index laws when

 multiplying or dividing algebraic terms
Laws of indices

Algebraic terms follow the rules of indices.
e.g. $y^{2} \times y^{3}=y^{5} \quad$ When multiplying index numbers with the same base, add the indices
$x^{7} \div x^{3}=x^{4} \quad$ When dividing index numbers with the same base, subtract the indices
$\left(p^{5}\right)^{2}=p^{10} \quad$ When raising a number index form to a power, multiply the indices

Surds

A value which is expressed as a root, such as $\sqrt{7}$ is called a surd.

A surd cannot be simplified to remove the root
e.g. $\sqrt{13}$ is a surd
$\sqrt{25}$ is not a surd because simplifies to 5

DFCIMALS

Simplify and manipulate simple algebraic expressions involving powers and roots

In the expression $3 x^{2}+2 x-x^{3}$ there are no like terms. The indices must match up to have like terms.
Like terms can be simplified.
e.g. Simplify $3 b^{2}+7 b^{3}-5 b+2 b^{2}$ Like terms are $3 b^{2}$ and $2 b^{2}$ Like terms are $5 b^{2}$
$=5 b^{2}+7 b^{3}-5 b$
e.g. Simplify $4 x^{2} \times 5 x^{4}=4 \times 5 \times x^{2} \times x^{4}$ Use rules of indices to combine the powers $=20 x^{6}$
e.g. Simplify $10 y^{7} \div 5 y^{3}=\frac{10 y^{7}}{5 y^{3}}$ Use rules of indices to combine the powers $=2 y^{4}$
e.g. Simplify $\left(3 p^{6}\right)^{2}=3 p^{6} \times 3 p^{6}$ se rules of indices to combine the powers $=9 p^{12}$

Practice questions

1. Write down like terms and then simplify each of the expressions.
a) $x+3 x^{2}+5 x^{2}+4 x$
b) $7 y^{2}-3 y^{3}+y^{2}-2 y^{3}+y$
2. Kim and Laura are looking at the algebraic expression $4 d^{2}+5 d^{4}$ Kim says that the expression cannot be simplified. Laura says it can. Who is correct? Explain your answer.
3. Find the total area of the compound shape below. The area of each section is given

4. Simplify these algebraic expressions.
a) $5 c^{3} \times c^{4}$
b) $2 w^{4} \times 4 w^{2}$
c) $4 p^{5} \div 2 p$
d) $2 d \times 9 d^{4} \div 3 d^{2}$
5. Identify which of these are surds.
a) $\sqrt{4}$
b) $\sqrt{17}$
c) $\sqrt{1}$
d) $2 \sqrt{3}$

Write down an expression for the difference between the areas of the two rectangles. simplify your answer
8. Expand and simplify the following
a) $2 x(4+3 x)-x(2+x)$
b) $6 p q^{2}(p-3 q)$
c) $2 m^{2}(3 m-1)-5 m(4-7 m)$

4.1 DECIMAL PLACE VALUE

N1

Objectives

Understand and use place value in decimals

Decimal numbers have digits whose value depends on their place value or position
e.g. The number 4.603 can be shown as

units 1		tenths 0.1	hundredths 0.01	thousandths 0.001
4	-	6	0	3

e.g. The number 0.346 has three tenths, four hundreaths and six thousandths

Order positive and negative decimal numbers

Decimal numbers can be written in ascending or descending order
Write zero place holders when ordering decimals with different numbers of decimal places.
e.g. When ordering $8.307,8.3,8.07,8.37$, consider
$8.370,8.300,8.070,8.307$.
In ascending order: 8.070, 8.300, 8.307, 8.370

Use a number line

Practice questions

1. Draw out each number line and mark on each number.

Use $>,<$ or = to make a correct number statement
a) 0.13 __- 0.2

b) $0.07-0.065$
c) 0.1000

d) 1.329 __- 1.4

2. Write down the smallest number in each set.
a) $2.78,2.709,2.8$
b) $-1.10,-1.4,-1.179$
c) $-2.35,-2.204,-2.1$
3. Write each set of numbers in ascending orde
a) $4.8,4.31,4.2,4.35,4.12,4.09$
b) $12.34,14.85,12.5,13.61,13.7$
c) $-0.06,-0.11,-0.27,0.35,-0.43$
d) $-1.203,-1.281,1.2,-1.29,-1.243$

SECTION 5
 MEASURES

5.1 ESTIMATING ANSWERS

Objectives

Estimate answers to calculations by rounding
 numbers to 1 significant figure

The answer to a calculation can be estimated by approximating each of the numbers in the calculation.
Often the numbers are approximated to 1 significant figure
e.g. Estimate the answer to $\frac{0.95 \times 3.207}{1.12+2.8}$
by rounding each number to
1 significant figure.
$0.95 \approx 1 \quad 3207 \approx 3 \quad 112 \approx 1 \quad 28 \approx 3$
So $\frac{0.95 \times 3.207}{1.12+2.8} \approx \frac{1 \times 3}{1+3} \quad$ Estimate $=\frac{3}{4}$

Round to a sensible degree of accuracy

When giving a final answer to a calculation, give a degree of accuracy which is sensible.
e.g. A room of total area $44 \mathrm{~m}^{2}$ is to be painted.

A tin of paint covers $15 \mathrm{~m}^{2}$
The number of tins required would be
$42 \div 15=2.933 \ldots$.. tins.
It is sensible to round this to 3 tins, since
only whole tins of paint can be bought.

Estimate lengths by comparing with

 known lengthsWe can use known measurements
to approximate unknown ones.
e.g. A handspan is approximately 20 cm

This can be used to estimate the length of the diagonal of a TV screen.

Use inequality notation to indicate error intervals due to truncation or rounding

A truncated number is approximated by removing all decimal digits to the right of the required accuracy level.
e.g. Truncate the number 3.50973 to 3 d.p.

Look at the digit in the third decimal place. 3.50973

Remove all digits to the right of the third decimal place 3.509

Notice how the 7 does not make the 9 round up.
Error intervals can be written for truncated numbers too
e.g. The width of an envelope is given as 14.2 cm
truncated to 1 d.p.
The error interval of the width of the envelope is
$14.2 \mathrm{~cm} \leq$ actual width $<14.3 \mathrm{~cm}$

1. Write each of the following numbers rounded to 1 significant figure
a) 18.5
b) 7.3
c) 135
d) 0.029
e) 0.00662
2. Write each of the following numbers truncated to 1 decimal place
a) 14.59
b) 3.084
c) 0.271
d) 13.829
e) 0.00662
3. By approximating each number, estimate the answer to each of these calculations.
a) $\frac{6.6 \times 9.4}{7.4}$
b) $\frac{11.6 \times 3.87}{57}$
c) $\frac{14.2 \times 9.6}{197}$
d) $\frac{18.5 \times 2.8}{6.42}$
4. Use approximation to estimate the answer to each of these calculations.
a) $\frac{(43.2-8.9)}{2.8}$
b) $(6.7+4.8) \times(10.45-2.7)$
c) $\frac{(58-19)}{(1.2 \times 3.9)}$
5. Mark's handspan is approximately 11 cm wide The length of his guitar is approximately 8 handspans. Estimate the length of his guitar in centimetres.
6. Rachel has an arm span of 1.8 m

She estimates the length of a garden hedge as 7 of her arm spans.
Estimate the length of the garden in metres.
7. The reaction time for a science experiment is 35.7 seconds, rounded to 1 d.p. Give the error interval of the time of the experiment

Ann measures the length of her dog walk as 4.8 km truncated to 1 decimal place Give the error interval of the length of her dog walk.

Work out the each of these calculations on a calculator.
(i) Write down all the digits in the answer on your calculator display
(ii) Write your answer to a suitable degree of accuracy.
(a) $\frac{5.3^{3}}{2.87 \times 1.76}$
b) $\frac{1.94 \times 5.89}{2.6^{2}}$
c) $\frac{6.22+\sqrt{141}}{29}$
d) $\frac{19.7 \times 1.6^{3}}{\sqrt{39}}$

Here is a formula $v^{2}=u^{2}+2 a s$, where

v is the final velocity,
u is the initial velocity
a is acceleration and
s is the distance.
A car starts from rest and accelerates at $4 \mathrm{~m} / \mathrm{s}^{2}$ over a distance of 100 m
Work out the final velocity of the car
Give you answer to a sensible degree of accuracy

5.2 SCALE DIACRAMS

Objectives

Make an accurate scale drawing from

 a diagramA scale diagram represents a place or object. The distances and lengths of the real places and objects are usually 'scaled down
Angles stay the same in a scale diagram.

Know that scale diagrams, including bearings and maps, are similar' to the real-life examples

A map is a scale diagram of an area showing various physical features

Use and interpret scale drawings

The scale is used to work out actual distances or distances on the scale diagrams.
e.g. A scale of 1 cm to 50 cm is used to build a model of a helicopter.

The rotor blades on the model are 8 cm long
Using the scale, the length of the real blades is $8 \times 50=400 \mathrm{~cm}$ or 4 m long The real length of the helicopter is 30 m .

$$
\begin{aligned}
& \text { Explain: Why is the real length converted into centimetres first? } \\
& \text { and }
\end{aligned}
$$

Find the scale

The scale can be found by comparing a distance on the scale drawing with the same distance in real life.
e.g. The distance between two towns is 50 km in real life. On a map it is 2.5 cm .

Work out the scale of the map.
2.5 cm is equivalent to 50 km

1 cm is equivalent to $50 \div 2.5=20 \mathrm{~km}$. Scale is 1 cm to 20 km

Practice questions

1. Triangle $A B C$ is right-angled at $B . A B$ is 6 m and $B C$ is 10 m
a) Draw a scale diagram of the triangle using a scale of 1 cm to 1 m
b) Measure the length of AC on the scale drawing
c) Write down the actual length of AC on the triangle.
2. The scale of a drawing is 12 mm to 3.5 m . Copy and complete the table

Scale length (mm)	Real-life length (m)
24	
	17.5
	28
84	

3. A model of a yacht is built to a scale of 1 cm to 32 cm .
a) The model is 60 cm long. What is the actual length of the yacht in metres?
b) The yacht has a mast which is 6.8 m high. How high is the mast on the model?
4. A scale drawing of an office building shows the building as 24 cm tall. The scale of the drawing is 1 cm to 5 m . Work out how tall the real office building is.
5. A map is drawn with a scale of 1 cm to 2.5 km . Jasmine says this is the same as using a scale of 5 cm to 15 km . Is she correct? Give a reason for your answer.
6. On a scale drawing, a roof beam is shown as 13 mm long. The real beam measures 2.6 m long What is 1 cm on the scale drawing equivalent to, in real-life?
7. The real distance between two towns is 16 km . On a map, the distance between the towns is 40 cm . What is the scale of the map?
8. A garden is 45 m long. A scale drawing of the garden shows the length as 18 cm . What is the scale of the drawing?
(2.) 9. An architect builds a model of a proposed new athletics stadium. Her model is built on a scale of 1 cm to 5 m . a) On the model, how long will the 100 m running straight be?
b) On the model, what is the distance around the inside of the 400 m track?
c) The model long jump run-up measures 5 cm . How long is the real run-up?10. A rectangular wall measures 18 m wide by 8 m high. The wall has a door in the centre measuring 2 m by 1 m a) Make a scale drawing of the wall and the door. Use a scale of 1 cm to 2 m .
b) Use your scale drawing to work out the real length of the diagonal of the door. Give your answer to the nearest centimetre.

5.3 BEARINGS

Objectives

Give bearings between points on a scale diagram or map

A bearing describes a direction

All bearings are measured clockwise from North and are given with 3 digits.
e.g. The bearing of B from A is 075°.

Using bearings diagrams
e.g. The bearing of a ship from

Falmouth is 124°
The bearing of the ship
from Plymouth is 206°
from Plymouth is 200°. Here is a diagram to show e position of the ship.

Understand clockwise and anticlockwise
An angle can be measured with a turn in a clockwise or anticlockwise direction.
e.g. \uparrow rotated through 90° clockwise looks like this $\boldsymbol{\rightarrow}$

Make an accurate scale drawing rom a diagram, including for solving bearings problems

SECTION 7

STRAIGHIT LINE GRAPHS
7.1 WORKING WITH COORDINATES

A8

Objectives

Plot and read coordinates in all four quadrants

All coordinates are written in the form (x, y) where x is the horizontal movement from $(0,0)$ and y is the vertical movement.
e.g. Point A is at $(-2,-2), \mathrm{B}$ is at $(3,4), \mathrm{C}$ is at $(-3,3)$ and D is at $(2,0)$

Solve problems involving coordinates

Plot and read coordinates in all four quadrants

Midpoint of a line segment

The midpoint has coordinates exactly in the middle o the coordinates of the two end points.
We calculate the midpoint between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ by using $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
e.g. Midpoint of $A B$ is $\left(\frac{-4+2}{2}, \frac{-2+5}{2}\right)=(-1,1.5)$

Practice questions

1. Look at the coordinate grid
a) Write down the coordinates of points A, B and C .
b) Write down the coordinates of a fourth point D, which forms a square $A B C D$.

2 Using this letter grid. write down the letters at these points.
a) $(2,3)$
b) $(-6,-1)$
c) $(-9,0)$
d) $(1,-6)$
e) $(-5,8)$
f) $(-4,-9)$
3. Write down the coordinates for these letters.
a) W
b) x
c) D
d) E
e) B
f) C
4. Write down the name of each line segment on the letter grid, which has these midpoints.
a) $(1,-2)$
b) $(-6,1.5)$
c) $(4,5)$
d) $(-5,5.5)$
5. Find the coordinates of the midpoint of each of these line segments on the letter grid.
a) OX
b) SE
c) AH
d) $B R$
6. $(9,4)$ and $(1,2)$ are connected with a line segment.
a) Find the coordinates of the midpoint of the line segment.
b) Write down the coordinates of two more points, with positive integer coordinates which have the same midpoint.
7. Find the midpoint of the following pairs of coordinates.
a) $(0,0)$ and $(6,8)$
b) $(-4,10)$ and $(0,0)$
c) $(2,6)$ and $(-2,4)$
d) $(-1,3)$ and $(-7,4)$
a) Write down the coordinates of the point D that forms a rhombus $A B C D$.
b) Work out the midpoint of $A C$ and of $B D$
c) Comment on what you notice

Gary says that the midpoint of $(3,4)$ and (p, q) is $(-1,1.5)$ Find the values of p and q.

0.6 MAP SCALES

Objectives

Use and interpret maps

The scale of a map or scale drawing can be given using ratio.
The ratio shows how many units in real life one map unit represents.
e.g. 1:200 means that 1 unit on the map represents 200 units in real life.
e.g. 1:100 000 means that 1 unit on the map represents 100000 units in real life.
This can be converted to actual units. Take centimetres as the units.
$1 \mathrm{~cm}: 100000 \mathrm{~cm} \quad 1 \mathrm{~cm}: 1000 \mathrm{~m} \quad 1 \mathrm{~cm}: 1 \mathrm{~km}$

Convert scales as ratios to units

The ratio showing the scale on a map can be used to find real or map distances
e.g. The scale of a map is $1: 200000$. The real distance between two cities is 156 km . Find the map distance.
The scale is $1: 200000$ or $1 \mathrm{~cm} \mathrm{:} 2 \mathrm{~km}$
The map distance is $156 \div 2=78 \mathrm{~cm}$
e.g. The scale of a map is $1: 10000$

The map distance between two villages is 16 cm . Find the real distance
The scale is $1 \cdot 10000$ or $1 \mathrm{~cm} \cdot 100 \mathrm{~m}$ The real distance is $16 \times 100=1600 \mathrm{~m}$ or 1.6 km

Estimate distances on maps

Practice questions

1. On a map, 1 cm represents 8 km
a) 16 km
b) 32 km
c) 4 km
d) 12 km
2. On a map, 1 cm represents 5 km
Work out the real distance between two places if their map distance is
a) 2 cm
b) 4.8 cm
6.5 cm
d) 12.2 cm
3. The scale of a map is $1: 500000$

On the map the distance between two towns is 6.2 cm .
Work out the real distance between the two towns. Give your answer in km
4. The scale of a map is 1:100 000 Work out the map distance between two towns which are 19 km apart.
5. Match the map scales with the correct map ratio
a) 1:35000
1 cm to 3.5 km
b) $1: 350000$
) 1 cm to 350 m
c) 1:100 000
d) 1:10000
iii) 1 cm to 10 km
v) 1 cm to 1 km
6. Write each scale as a map ratio.
a) 1 cm to 2 km
b) 3 cm to 1.5 km
c) 1 cm to 300 m
d) 5 cm to 1 km7. The distance between two towns is 6 km . On a map the distance between the towns is 30 cm . Work out the ratio scale of the map.

This is the map of the UK
It has a scale of 1 cm to 50 km .
Estimate the real distance between:
a) Exeter and Aberdeen
b) Belfast and London
c) Cardiff and Norwich

Georgia wants to draw a map of her school which covers an area of 1 km by 1.3 km Her map must fit onto a piece of paper measuring 28 cm square. Suggest a suitable scale for her map. Give your answer as a ratio. Give reason for your answer.

SECTION 11

SHAPES AND TIRANSFORMAHIONS

11.1 ANGLE PROPERTIES OF LINES

$G 1$

c3

Objectives

Use two-letter notation for a line and three-letter notation for an angle

Figure 1 shows two line segments $A B$ and $D M$. M lies on segment $A B$.
Angle x can be written as $\angle A M D$ or $\angle D M A$
Angle y can be written as $\angle \mathrm{DMB}$ or $\angle \mathrm{BMD}$.
Angles that meet at a point on a straight line add up to $\mathbf{1 8 0}^{\circ}$. $\left(x+y=180^{\circ}\right)$
Figure 2 shows two line segments $P Q$ and $R S$, which intersect at point X .
Angles that meet around a point add up to $360^{\circ}\left(a+b+c+d=360^{\circ}\right)$
Angles that are opposite each other when two straight lines intersect are called vertically opposite angles.

Vertically opposite angles are equal: $a=b$ and $c=d$

When a straight line crosses a pair of parallel lines, it makes a set o corresponding angles, and a set of alternate angles.
Corresponding angles lie in corresponding positions on each parallel line.

Corresponding angles are equal to each other

In Figure 3: $w=u, x=v, z=t$ and $y=s$
Alternate angles lie inside the parallel lines, on opposite sides of the line that crosses them

Alternate angles are equal to each other.

in Figure 3 :

$y=u$ and $x=t$

e.g. In Figure 4, find the angles marked with a letter in this diagram $a=180-66$
$=114^{\circ}$ (angles on a straight line add up to 180°)
$b=66^{\circ}$ (vertically opposite to 66°)
$c=114^{\circ} \quad$ (vertically opposite to a)
$\begin{aligned} & c=114^{\circ} \quad \text { (vertically oppos } \\ & d=114^{\circ} \quad \text { alternate to } c \text {) }\end{aligned}$
$e=66^{\circ}$ (corresponding to b)
$f=114^{\circ}$ (corresponding to c)
$g=66^{\circ} \quad$ (alternate to b)

Figure 2

Figure 3

Figure 4

Recall and use properties of angles at a point, angles at a point on a straight line, right angles and vertically opposite angles

Find missing angles in parallel lines using properties of corresponding and alternate angles

1. Use the three-letter notation to describe angles t, u, v, w, x and y in the following diagrams: a)

2. Work out the value of each angle marked with a letter Give reasons for your answers.
a)

b)

d)
e)

f)

3. For each diagram, find the lettered angles .Give reasons for your answers.
a)

c)

d)
e)
f)

For each of the following diagrams, work out the size of the lettered angles. Give reasons for your answers.
a)

c)

11.5 ENLARGEMENTS AND SIMILARITY

Objectives

Understand that similar shapes are enlargements of each other and angles are preserved

Similarity

When two shapes have the same shape, including the same angles, but are different sizes by length then they are similar. A shape and its enlargement are always similar.

Enlarge objects using simple integer scale factors

Here is Radcliffe Camera in Oxford. Every length on the second picture is three times that of the first picture, so the second picture is an enlargement of the first by scale factor 3 .
in an enlargement, lengths and areas change, but angles do not.

Practice questions

1. A rectangle has length 24 cm and width 15 cm . If it is enlarged by scale factor 4 , what will its new length and width be?
2. A photo which is $12 \mathrm{~cm} \times 18 \mathrm{~cm}$ is enlarged by scale factor 3 . What are the dimensions of the enlarged photo?

Identify the scale factor of an enlargement

 of a shape as the ratio of the lengths of twocorresponding sides: corresponding sides:
To find the scale factor of an image, find the ratio of one length to the corresponding length on the object

$$
\text { Scale Factor }=\frac{\text { Length of side on image }}{\text { Length of corresponding side on objj }}
$$

e.g. Shape B is an enlargement of shape A To find the scale factor enlargement from A to B The base of A is 2 units, the base of B is 4 units. The scale factor from A to B $=\frac{4}{2}$
$=2$

A parallelogram has a base of 42 cm , a perpendicular height of 16 cm and its smaller angles are each 47°.
the parallelogram is enlarged by a scale factor 5 , what will its new neasurements be?

4. Here are four triangles, C, D, E and Work out the scale factor of:
(a) D from C .
(b) E from C .
(c) F from C .
d) From D.
6. Shape G is as shown.

Draw an enlargement, scale factor 4 and label it H .
Enlarge H by a scale factor of 2 and label it J .
What scale factor would enlarge shape G to get shape J?
An enlarged shape has dimensions as shown
It was enlarged from a smaller shape by a scale factor of 6 .
What were the dimensions of the original shape?

G

(3)

For each pair of shapes, say if they are similar and give your reasons. a)

b)

SECTION 14
 DATA

14．1 CATEGORICAL AND DISCRETE DATA

Objectives

Understand different types of data

Categorical data is non－numerical and is often descriptive．For example，colours of cars．
Discrete data is numerical and takes distinct values．For example，number of students in a team．

Design and use data collection sheets

A common way of collecting data is using a tally chart．
e．g．Complete the tally chart for the following data about the number of hens＇eggs stolen by a fox，over a three－week period．
Fill in the frequencies．
$\begin{array}{lllllll}1 & 3 & 2 & 3 & 1 & 1 & 0\end{array}$
$\begin{array}{lllllll}2 & 2 & 0 & 1 & 1 & 2 & 2\end{array}$
$\begin{array}{lllllll}3 & 1 & 2 & 0 & 2 & 3 & 1\end{array}$

Eggs laid	Tally	Frequency		
0	$\\|\\|$	3		
1	$\mathrm{HI} \mathrm{\\|} \\|$	7		
2	Π II	7		
3	IIII	4		

Note that the tallies are grouped so that m means five．

Construct and interpret pictograms and bar charts．

e．9．The following data was collected about the lunch preferences of 32 students．

Lunch	Frequency
Sandwich	12
Chips	6
Pizza	7
Salad	4
Other	3

Draw
A bar chart b）A pictogram to represent this data

Bar char

Pictogram

1．The data on the right was collected about people＇s favourite colours $B=$ Blue，$O=$ Orange，$R=$ Red，$P=$ Pink and $G=$ Green
Draw and complete a tally chart for this data．
$\begin{array}{lllll}R & B & O & R & O \\ O & B & G & B & R\end{array}$
The data below is collected on the football team 24 people support．
$\begin{array}{lccccccccccc}M U & C & A & M C & A & M C & M C & M U & C & M U & C & M C\end{array}$

MU＝Manchester United，MC＝Manchester City，C＝Chelsea，A＝Arsenal，L＝Liverpool，O＝Other Draw and complete a tally chart for this data．Which team was the most popular？

3．The pictogram represents the number of televisions in households：
a）How many households had no televisions？
b）What is the most common number of televisions in this survey？
c）How many households were surveyed？
None $\check{\square}$
One 首
Two 首 首
Three 首 首
Four or more
4．The bar chart shows the numbers of brothers and sisters the members of a form group have
a）How many members of the form have 1 brother or sister？
b）What is the largest number of brothers or sisters that any member of the form had？
c）How many people are in the form group？

5．The tally chart represents the money to the nearest five pounds，that a group of people had in their pockets：
Draw a pictogram of this information using the key
£ represents 3 people

Amount（£）	Frequency
0	3
5	6
10	15
15	12
20	9
$\mathbf{2 5}$	6

Jennifer is designing a sheet to collect data on pocket money received by people in her maths class；so far，she has done this：

Name	Pocket money

Explain how Jennifer could make her sheet better．

15.4 CIRCUMFERENCE

Objectives

Recall and use formulae for the circumference of a circle

 Give an answer in terms of πA circle is a shape defined by a set of points which are all the same distance from a given point (the centre).
The circumference of a circle of radius $r=2 \pi r$
where $\pi=3.142$ (to 3 decimal places)
The π button on your calculator will use a value to several decimal places. π can be left in the answer, if an exact value is required
e.g. A circle has diameter 19 cm . What is its circumference? Give your answer in terms of π, and then to 1 d.p.
If the diameter is 19 cm , then the radius $=9.5 \mathrm{~cm}$
Circumference $=2 \pi r$
$=2 \times \pi \times 9.5$
$=19 \pi \mathrm{~cm} \Rightarrow 59.7 \mathrm{~cm}$ (1 d.p.)
e.g. Find the radius of a circle if its circumference is 36.3 m . Circumference $=2 \pi r \Rightarrow r=\frac{\text { Circumference }}{2 \pi}$

$$
r=\frac{36.3}{2 \pi}
$$

$=5.8 \mathrm{~m}$

Find radius or diameter, given perimeter of a circle

Recall the definition of a circle and identify, name and draw parts of a circle including tangent, chord, arc and segment

Find the perimeters of semicircles, quarter-circles

The perimeter is the distance all the way around a shape. If part-circumferences are required, don't forget to include the other lengths that make up the perimeter.
e.g. A silversmith is basing the design for a pendant on a quarter circle radius 2 cm . Find the perimeter of the silver pendant.
Give your answer in terms of π
If it was a full circle, circumference
$=2 \times \pi \times 2=4 \pi \mathrm{~cm}$
Perimeter of pendant $=\frac{4 \pi}{4}+2+2$
$=(\pi+4) \mathrm{cm}$
4. A tennis ball has a diameter of approximately 6.7 cm . What is its circumference?
5. What is the circumference of each of these coins?
a) 1 p coin, with diameter 2 cm
b) $2 p$ coin, with diameter 2.6 cm
c) 5 p coin, with diameter 1.7 cm
d) 10 p coin, with diameter 2.4 cm
6. A rope is tied 8 times around a capstan (cylindrical post). The post is 42 cm diameter How long is the rope around the capstan?

The shooting 'circle' on a netball court is a semi-circle of radius 4.9 m What is the perimeter of the semi-circle?
8. A bicycle wheel has a diameter of 630 mm including the inflated tyre. a) Calculate the circumference of the wheel.
b) If the wheel turns 2400 times, what distance has it covered, to the nearest metre?The radius of the stone circle at Stonehenge is approximately 15 m What is the approximate perimeter of the stone circle?

10. Heather cuts a 30 cm diameter pizza into 4 quarters.

What is the perimeter of each piece?11. A human wrist can be taken to be roughly circular. Wrist measurements are the circumference of the arm at the wrist. a) What is the wrist measurement of Zach whose arm is 70 mm wide at the wrist?
b) What is the wrist measurement of Jasmine whose arm is 55 mm wide at the wrist? c) If Josef has a wrist measurement of 164 cm , how wide is his arm at the wrist?

The shape shown is made up of a quarter circle and a semicircle. M is the mid-point of the radius of the larger circle. Find the perimeter of the shape.
Leave π in your answer.

Use the π button on your calculator in these practice questions.

1. Calculate the circumference of circles with these radii:
a) 7 cm
b) 25 cm
c) 16.3 m
d) 235.2 mm
2. Calculate the circumference of circles with these diameters
a) 12 cm
b) 45.3 m
c) 82.6 mm
d) 143.7 cm
3. If the Earth has a radius of approximately 6400 km , what is the length of the equator?

SECTION 18

GEOMETRY

18.1 CONSTRUCTIONS

1. Draw a straight line and label it LM.

Using only compasses, construct the perpendicular bisector of LM
2. Draw two straight lines that meet at a point and label the resulting angle $P Q R$. Using only compasses, construct the bisector for angle PQR.
3. Construct the perpendicular at X on the line VW .
$v \longrightarrow \quad{ }^{\circ}$
4. Draw a triangle and label the vertices X, Y and Z Construct the angle bisectors for each angle in triangle XYZ
5. Draw a circle, radius 4 cm and construct a regular hexagon inside it.
6. Construct a perpendicular from point H to line JK .
H^{\bullet}Copy the triangle ABC
Construct the perpendicular bisector for each side of triangle ABCConstruct the perpendicular from each vertex of triangle DEF to its opposite side

Draw a straight line and label it $J \mathrm{~K}$. Construct an angle of 60° on the line JK Then bisect this angle to make two angles of 30° each.
(3)
10. Construct the perpendicular bisectors on each side of quadrilateral LMNO

18.4 SIMILARITY

Objectives

Solve problems to find missing lengths in similar shape

Two shapes are mathematically similar if corresponding angles are all equal and corresponding sides are in the same atio.
One shape may be a scaled up, scaled down, rotated or reflected version of the other.
If two shapes are similar, then the scale factor of the enlargement of corresponding sides on the object and image is the same
e.g. Triangles $X Y Z$ and $A B C$ are similar.
$X Y=5 \mathrm{~cm}, Y Z=8 \mathrm{~cm}, B C=15 \mathrm{~cm}$ and $A C=27 \mathrm{~cm}$
Calculate the length of sides $A B$ and $X Z$.
Scale factor of the enlargement: $\frac{B C}{Y Z}$
All sides of XYZ are multiplied by $3: \begin{array}{rll}\mathrm{AB} & =5 \times 3 & \Rightarrow \boldsymbol{x}=15 \mathrm{~cm} \\ y \times 3 & =27 & \Rightarrow \boldsymbol{y}=9 \mathrm{~cm}\end{array}$

Understand similarity of triangles and of other plan
 hapes, including all circles or all regular polygons
 with equal number of sides

Practice questions

1. Triangles $A B C$ and $D E F$ are similar.
a) What is the size of angle DEF? Explain your answe
) Work out the length of $B C$.
c) Work out the length of $D E$.

2. One rectangle measures $7 \mathrm{~m} \times 3 \mathrm{~m}$, and another measures $14 \mathrm{~m} \times 7 \mathrm{~m}$.

Are the two rectangles similar? Explain your reasoning
3. Rectangles G and H are simila Work out the value of length

4. Pentagons J and K are similar
a) What is length m
b) What is length n ?

5 These two quadrilaterals are similar. Find the angles a, b, c, d and e
Find lengths \boldsymbol{x} and \boldsymbol{y}.

In these two similar triangles, the scale factor of enlargement is 3.5 Find the values of $\boldsymbol{p}, \boldsymbol{q}$ and \boldsymbol{r}.
What type of triangles are these?

Four quadrilaterals (not drawn to scale) are shown below.

a) Calculate $\angle A D C$
b) Which of the quadrilaterals is not similar to the other three?

In triangle RST, UV is parallel to RS
Draw, and label triangles RST and UVT as separate diagrams.
a) Calculate the length of SV
b) Calculate the length of TU .

In triangle $L M N, P Q$ is parallel to $M N$.
Draw and label triangles LPQ and LMN as separate diagrams
a) What is the length of PM?
b) What is the length of NM ?

Six shapes are shown below.
a) Two of the shapes are congruent. Write down the letters of these shapes
b) One of the shapes is similar to A Write down the letter of this shape

ANSWERS

Section 1

1.1 Integers and place value

$\begin{array}{lll}\text { a) } 6000 & \text { b) thirty thousand, two hundred and nine } & \text { c) } 2001036\end{array}$

b) $8,3,2,1,0,-2,-4,-6,-9$
c) It will have no effect on the order since they are all twice as big
$\begin{array}{lll}\text { 3. a) } 97431 & \text { b) } 49731 & \text { c) } 31479\end{array}$
4. a) $4443,30400,44033,44104,400300$
b) $888,8882,28888,208088,280880$
5. $-4,-2,0,1,2$
6. $480,360,240,120$
7. 772 or 722
8. 523026
a) 269350 and 225350
10. 567 and 543
1.2 Negative integers

1.3 Calculating with negative integers

1.	$\begin{aligned} & \text { a) }-18 \\ & \text { g) } 48 \end{aligned}$	$\begin{aligned} & \text { b) }-8 \\ & \text { h) } 20 \end{aligned}$	c) 54	d) -12	e) -12
2.	a) False -5		b) True	c) False -4	d) False 28
3.	a) -2242	b) 10710		c) -37	d) 118
4.	$-18^{\circ} \mathrm{C}$				
5.	a) -48	b) -12	- c) -12	d) 48	e) 12
6.	$\begin{aligned} & \text { a) }-132 \text { b) }-6 \text { c) }-25 \\ & -132,-100,-25,-6,0 \end{aligned}$			d) 0	e) -100
7.	a) $-6 \times-7=42$			= -6	

1.4 Multiplicatio

$\begin{array}{llll}\text {. a) } 34 & \text { b) } 0 & \text { c) } 129 & \text { d) }-8\end{array}$
a) 6 b) 6 c) 12 d) 12
$\begin{array}{llll}\text { 4. a) } 646 & \text { b) } 350 & \text { c) } 1854 & \text { d) } 2728\end{array}$
5. $£ 425$
6. $64 \times 12=768 \mathrm{p}=£ 7.68$
7. $18 \times 12=216 \mathrm{~m}^{2}$

2a) She can subtract 50 from $1000 \quad$ b) $50 \times 19=950$
10. He has not put a zero in the units column for the second row so he has multiplied 62 by 3 rather than by 30).
The correct answer is $62 \times 37=2294$

1.5 Division

a) 45 lots of 19 is 855 , so 855 divided by 19 equals 45
b) The product of 36 and 42 is 1512 , so 1512 divided by 42 equals 36
2. a) 35 b) 43 c) 37 d) 21
$\begin{array}{lllll}\text { 3. a) } 25 & \text { b) } 38 & \text { c) } 30 & \text { d) } 52\end{array}$
$\begin{array}{lllll}\text { 4. a) } 21 r 5 & \text { b) } 14 r 6 & \text { c) } 21 r 17 & \text { d) } 28 r 3\end{array}$
5 The remainder must be less than the divisor
6. 33 packets
$\begin{array}{ll}\text { 7. } & 18 \text { people } \\ \text { 8. } & \text { a) } 21 \text { piece }\end{array}$
$\begin{array}{ll}\text { 8. a) } 21 \text { pieces } & \text { b) } 45 \mathrm{~cm}\end{array}$
9. 12 coaches
10. 1258
11. 544 divided by $16=34$ remainder 0
1.6 Priority of operations
$\begin{array}{lllll}\text { 1. } & \text { a) } 15 & \text { b) } 8 & \text { c) } 7 & \text { d) } 8 \\ \text { 2. } & \text { a) } 42 & \text { b) } 3 & \text { c) }-28 & \text { d) } 98\end{array}$
3. a) 5 b) $29 \quad$ c) 5
4. Tamin is wrong: $6+5 \times 8=6+40=46$
4. Tamin is wrong: $6+5 \times 8=6+40=46$.
He has done the addition first and then the multiplication.

5 a) $(20-10) \div 2=5 \quad$ b) $2 \times(7+2)=18$
$5 \begin{array}{ll}\text { a) }(20-10) \div 2=5 & \text { b) } 2 \times(7+2)=18 \\ \text { c) } 24 \div\left(8-2^{2}\right)=6 & \text { d) } 10 \times(12-8)+2=42\end{array}$
$\begin{array}{ll}\text { 6. a) } 4+6 \times 3<(4+6) \times 3 & \text { b) } 5 \times 6 \div 2=5 \times(6 \div 2) \\ \text { c) } 10-3 \times 2<(10-3) \times 2 & \text { d) } 9+1^{2}<(9+1)^{2}\end{array}$
c) $10-3 \times 2<(10-3) \times 2$
c) $20-(3 \times 2+5)$
8. The calculation only multiplies 13 by 2 ; she needed to add 13 and 18 first before multitylying by 2 .
The correct calculation is 18
The correct calcuation is $(18+13) \times 2(=62)$
9. a) 45 b) 4 c) $4 \quad$ d) 5
10. a) $(3+0) \times(10-7)=9 \quad$ b) $3 \times 1 \div(10-7)=1$
2.1 Square numbers

1.	a) 25	b) 49	c) 121	d) 169
2.	a) 6	b) 9	c) 12	d) 10
3.	a) 16	b) 2	c) 13 and -13	d) 64
4.	8			
5.	$\begin{aligned} & \text { a) } 14^{2}>144 \\ & \text { c) } 3^{2}=\sqrt{81} \end{aligned}$		b) $\sqrt{121}<15^{2}$ d) $-6<$ the nega	ative square root of 25
6.	$(-2)^{2}=4$	$\sqrt{100}=-10$	$(-3)^{2}=9$	$0^{2}=0$
7.	Answers to a) and C) are not integers			
8.	a) 10	b) 16	c) 9, 81	
9.	a) the square root of 16 is 4 cm not 8 cm b) the length of the square $=4 \mathrm{~cm}$ and the perimeter is $4 \times 4=16 \mathrm{~cm}$			
10.	a) sometimes true e.g. $1^{2}=1$ (square is not greater) but $2^{2}=4$ (square is greater) b) sometimes true e.g. $2^{2}=4$ (is even) but $3^{2}=9$ (is odd) c) always true e.g. $\sqrt{0}=0, \sqrt{25}=5$ or -5 (so a square root can be positive, negative or zero) d) never true e.g. anything squared is always positive			

2. 2 Index notation

1.	a) 3^{3}	b) 4^{5}	c) 2^{4}
2. a) 1	b) 125	c) 1000	d) 5×10
3. a) 2	b) 3	c) 1	d) 4

4. a) 200 is the odd one out

All numbers are square numbers apart from 200
9 is the odd one out. All numbers are cube numbers apart from
$\begin{array}{ll}\text { a) } 5^{2} \text { (25) is larger than } 4 & \text { b) } 10^{3}(1000) \text { is larger than } 27\end{array}$
$2^{5}=32 \sqrt[3]{1000}=10 \quad \sqrt{196}=14 \quad \sqrt{121} \quad 11 \sqrt[3]{1}$
$\begin{array}{llll}\text { a) } 169 & \text { b) } 64 & \text { c) } 3 & \text { d) } 3\end{array}$
$\begin{array}{llll}\text { a) } 169 & \text { b) } 64 & \text { c) } 3 & \text { d) } 3 \\ \text { a) False } 1^{10}<10^{1} & \text { b) false } 2 \times 2 \times 2=2^{3}\end{array}$
c) false $\sqrt[3]{1}=1$ only \quad d) true
) $\sqrt[3]{1}=\sqrt{1} \quad$ b) $64=8^{2}=4^{3}$
10. Square number $=196\left(=16^{2}\right)$ and . $C=169\left(=13^{2}\right)$

2.3 Laws of indice

1.	a) 4^{5}	b) 10^{6}	c) 5^{6}
2. a) 3^{3} b) 2^{5}	d) 11^{5}		
3. a) 2^{6}	b) 2^{12}	c) 3^{15}	d) 7^{30}
3) 3^{30}			

4. part a) $\left(10^{2}\right)^{4}=10^{8}$ and part c) $5^{3} \times 2^{3}=1000$; do not equal 10^{6}

$$
\begin{array}{llll}
\text { a) } 2^{5} \times 5^{2} & \text { b) } 3^{5} \times 5^{4} & \text { c) } 5^{4} \times 2^{7} & \text { d) } 10^{3}
\end{array}
$$

Part d) is the odd one out - as it is the only one which is correct
a) No. she is not correct. The answer is 2^{3}
. No, he is not correct. The answer is 8
9. a) Mistakes: $(2+1)^{3}=3^{3}=27$ d) Mistakes: $5^{6} \div 5^{6}=5^{0}=$
10. a) $10^{0}=1^{5} \quad$ b) $9^{3}=3^{6} \quad$ c) $2^{4}=4^{2}$

	Divisible by 2	Divisible by 3
Prime Numbers	2	3
Not prime		
numbers	10,32	$9,45,63$

5. a) False b) true c) true d) true
a) False. 2 is prime number and is
b) False. 2 is the smallest prime
c) False. 97 is the largest prime under 100.99 is not prime.
a) True
a) integer answer
6. 90

9 a) sometimes tru
b) not integer answer, not divisible by
10. 2, 5, 11

2.5 Factors

| 2.a) 2^{6} b) $2^{5} \times 3^{2}$ c) 2×3^{4} d) $2^{2} \times 3 \times 5^{2}$
 3. a) 36 c) 40 d) 180 ac | a) |
| :--- | :--- | :--- | :--- | :--- |

(0) (2) (3) (2)
4. 4 and 1 are not prime factors. $24=2 \times 2 \times 2 \times 3$
$\begin{array}{ll}\text { 5. a) } 40=2 \times 2 \times 2 \times 5 & \text { b) } 32=2 \times 2 \times 2 \times 2 \times 2 \\ \text { c) } 52=2 \times 2 \times 13 & \text { d) } 10=3 \times 5 \times 7\end{array}$
6. Isabella is correct. Jake has not used index form and Ben has not

Isabelta is
mutiplied.
$48=2 \times 2 \times 2 \times 2 \times 3=2^{4} \times 3$
8. a) $33=3 \times 11$ and b) 1 is not a prime factor
9. a) true since $2 \times 3=6$
b) true since $2^{2}=4$
c) false; it is a multiple not a factor
c) false; it is a multiple not a factor
10. a) e.g. $32=2^{5}$ b) e.g. $500=2^{2} \times 5^{3}$

2.6 Multiples and LCM

a) $4,8,12,16,20$ c) $15,30,45,60,75$

 b) $10,20,30,40,50$d) $30,60,90,120,150$
\qquad
24
a) $18=2 \times 3 \times 3 \quad 24=2 \times 2 \times 2 \times 3$

c) $\operatorname{LCM}(18,24)=72$
a) $\operatorname{LCM}(6,8)=24$
b) $\operatorname{LCM}(9,12)=36$
$\operatorname{LCM}(2,3,5)=30$
e.g. 9 or 18 or 45
e.g. 7 or 14 or 42

13 times including midnight and noen
0. $5,7,13$

Each 30 seconds. Sandi has done 5 and Joel has done 4. So 5×60
$30=10$ times.
Mr Green bakes 15 batches of brownies
Mr Green bakes 15 batches of brownies.
Miss Siver bakes 7 batches of cookies. They will make 210 of each.

8. Intersects x-axis at (6,0) and $(-5,0), y$-axis at $(0,-30$

25.5 Working with formulae

1. a) ${ }^{\text {d) }}$
$56 \mathrm{~cm}^{2}$
2. a) 10 cakes \quad b) 19 cakes \quad c) 32 people d) 20 people require 10 cakes and 40 people require 15 cakes a) (the +5 is the issue)
3. Jasmine needs to divide the whole of $t+3$ by 4

Answer should be $n=\frac{t+3}{4}$
$\begin{array}{lll}\text { 5. a) } t=\frac{d}{7} & \text { b) } n=m-9 & \text { c) } h=\frac{c-10}{6}\end{array}$ d) $g=10-h \quad$ e) $x=2(y+5)$ or $x=2 y+10$
6. $h=\frac{c-x y}{12}$
$\begin{array}{lll}\text { 7. a) } x=\frac{v+2}{4} & \text { b) } x=\frac{2 v}{9} & \text { c) } x=\sqrt{v}\end{array}$

8. $b=\frac{2 \mathrm{~A}}{h}-a$
9. $r=\sqrt{\frac{2 \mathrm{~A}}{\pi}}$
10. $x=\sqrt{4 \pi-7 y}$

25.6 Limits of accuracy

$\begin{array}{ll}\text { 1. a) } 18453 & \text { b) } 18450 \\ \text { d) } 18000 & \text { e) } 20000\end{array}$

2. Gerry has not found a number that is close to what there was initially.
 Paul has rounded to 2 decimal places not 2 significant figures Natalie should have rounded the 4 up to 5 .
3. 135
4. 135
5. Any number from 399.5 up to but not including 400.5
6. 43 minutes 29 secon
7. a) $75 \mathrm{~s} \leq$ actual value <85
b) $12250 \mathrm{~m} \leq$ actual value $<12350 \mathrm{~m}$
c) $33.5 \mathrm{C} \leq$ actual value $<34.5 \mathrm{cl}$
d) $12.25 \mathrm{~cm} \leq$ actual value $<12.35 \mathrm{~cm}$

Greatest bicycle length: 154.9 centimetres
Least shed length: $1.5 \mathrm{~m}=150 \mathrm{~cm}$
The bicycle is not guaranteed to fit in the shed
$\begin{array}{lll}\text { 8. a) } 20.689655172 & \text { b) } 20.7\end{array}$
d) Truncated to 20 is the most sensible degree of accuracy because J 7120571286
$90 \div 7=£ 12.85714286$
someone will get $£ 1$ less than evy $£ 13$ (but $£ 13 \times 7=£ 91$ so Somene winget 1 less than everyone else)
Suggest truncating to 2 decimal places (nearest penny) as everyone
will receive the same, with just 50 l left over. Or, truncate to 1 decima will receive the same, with just 5 p left over. Or, trunc
place, give everyone $£ 12.80$ and keep the extra 40 p.
10. $74.75 \mathrm{~cm}^{2} \leq$ Area $<93.75 \mathrm{~cm}^{2}$

CALCULATOR HACKS

Prime factorisation
SHIFT - FACT
Use this to find the prime factors of a number.
Example
To find the prime factors of 360 :
Key sequence

$$
360=
$$

\| Using table mode
Mode 3
For most calculations, the calculator will be in
Mode 1 (COMP)
Mode 3 - TABLE can be used to fill in tables, fo
graphs.

Complete the table of values for

$$
y=x^{2}+2 x+4
$$

Remember! Ensure that you go back to MODE 1 after filling in the table

Example

The calculator gives you all y values
for steps of 0.5 in \times values.
The table on the exam paper shows unequal step sizes, so you must ensure that you read the correct values from the calculator, to match the x values on the exam paper.

The prompts Start? and End? require the inputs of the smallest and the largest value in the table (-4 and 2 in the example)

Example

When calculating

$$
1 \frac{1}{2}-\frac{3}{4}
$$

a common error is to enter 1 then press and enter

$$
\square \frac{1}{\square}
$$

Instead, key the following sequence...

You should see three boxes on the screen

Key sequence

1(1)1(1)2(1)-3(1)4=

The arrow in the key sequences shown is typically a large white button marked REPLAY

Calculator screen shows

Cancelling fractions
Express the following faction in its simplest form $\frac{18}{27}$
(Note: This may be the last part of a question on the calculator paper.)

Key sequence

$$
\text { 픔 } 18 \text { (1) } 27=\frac{2}{3}
$$

5 Are you in the correct TRIG mode for the exam?

Marks can be lost for not being in the correct trig. mode

Quick check

When you key in the sequence
Sin (30)

Do you see this?

YES - you are in the correct MODE
NO - you need to change the MODE

Key sequence

SHIFT SETUP Option 3 3Deg

[^0]
CORE SKILLS AND COMMON MISTAKES

There are six core skill areas in your maths papers. Each of these areas are covered within this book and can be identified for each topic by the different tab colours of the specification references.
This is a summary of common errors made in past examinations. Avoid the same pitfalls and learn from the mistakes of others!

Number

N

1. Students' responses to some questions have many arithmetical errors, mainly in calculations requiring division
2. Even on the calculator papers, some students use incorrect non-calculator methods, indicating they had no calculator (or were unable to use one)
3. Rounding to a given number of significant figures poses problems for some students. Be confident with this
4. Many students still struggle with the concept of dividing fractions.
5. Money problems are tackled well, but questions involving other units, or a change of unit are poorly attempted. 6. Be prepared in your understanding of union or intersection, and their association with a Venn diagram Many misunderstandings relating to time were noticed, particularly when using a timetable or journey planning
6. Students commonly do not recognise that an instruction to estimate an answer should trigger them to apply rounding. Any attempt to apply a complex calculation results in zero marks being awarded. Note that any attempt to round will gain some marks, not necessarily just to 1 significant figure

Algebra

When negative values are involved, students' performance is generally weaker. For example, drawing a graph of $y=1-4 x$, or in calculating the values for a quadratic where the x values are negative. Students should be more practised in using the symmetrical properties of a parabola to check their curve.
2. Rearranging formulae remains a weakness of many Foundation students and should be practised much more 3. There seems to be little understanding of the relationships between equations and their graphs, for example using the values of m and c on parallel graphs, when finding an equation of a straight line.
4. Methods of solving equations vary, but those who use the 'equation balancing' method tend to achieve more marks. Students should be reminded that it is rare to achieve full marks using trial and improvement methods and this method should be avoided. Students should also take care in using the correct order of operations.

NOTES, DOODLES AND EXAM DATES

Doodles

Exam dates
Paper 1:

Paper 2:

Paper 3

EXAMINATION TIPS

When you practise examination questions, work out your approximate grade using the following table. This table has been produced using a rounded average of past examination series for this GCSE. Be aware that boundaries vary by a few percentage points either side of those shown.

GCSE Maths: Foundation

Grade	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	\mathbf{U}
Paper 1F (\%)	73	59	44	29	14	0
Paper 1F (\%)	71	58	43	28	13	0
Paper 1F (\%)	68	54	40	26	13	0

Overall grade
 F Tier (\%)

1. Read questions carefully. This includes any information such as tables, diagrams and graphs.
2. Remember to neatly and clearly cross out any work that you do not want to be marked. Do not scribble over it, rub it out or render it illegible in some other way.
3. Learn how to use your calculator, compasses and protractors correctly and take them to the exams. There is no calculator allowed in Paper 1 F
4. Show your workings. There are marks awarded for workings out on some questions, even if the answer is corrrect. Even the most basic of calculations or steps must be shown. This is particularly true of the calculator papers.
These questions will typically state in the question

- "You must show all your working."
- "Give reasons for your answer
- "Prove..."

5. Avoid using multiple methods to answer the same question. Examiners are instructed to award 0 marks for workings that are ambiguous, or where it is not clear which method leads to the answer given.
fyou change your mind on a method, you should cross out the previous working and show the intended method clearly.
6. Presentation matters. Good written communication helps the examiner to award you marks.

Common issues include include:

- Illegible handwriting can mean examiners don't award you marks if they can't confidently read your answers.

Some students write answers in a foreign language and therefore work cannot be marked - all answers are expected to be in English.
The numbers 4 and 9 are more commonly written ambiguously, also 1 and 7
Over-writing to correct mistakes is becoming more common. Students are reminded again to cross out and rewrite their answers.
7. Check through your answers if you have spare time. It is very easy to make a silly mistake that you could easily correct for a few extra marks. It might make the difference between two grades. If you go wrong somewhere, you may still be awarded some marks if the working out is there. It is also much easier to check your answers if you can see your working out. Remember to give units when asked to do so

Good luck!

INDEX

Symbols

$=, \neq,<, \geq, \leq, \geq, 6$
3D shapes, 170
3D shapes, 170
drawing, 4
nets, 171
planes of symmetry, 17

A

algebraic
expression, 23
manipulation, 32
notation, 23
algebraic expression, 24, 32
angle
calculations, 164
of depression, 223
of elevation, 223
properties, 11
angles
exterior, 112
in a triangle, 1
of a polygon, 112
approximate solutions, 188
arc, 166, 254
area
of compound shapes, 50
of simple shapes, 50
ascending order, 2
average, measures of, 158, 228

B

bar chart, 144, 156
composite, 14
bearings, 45
best buy problems, 135, 142
blas, 230
BIDAS, 10
brackets, 10, 30
C
calculating with ©. 166, 168 cancellation, 26
centre of enlargement, 120
centre of enlargement,
chord, 166
circle
area, 168
circumference, 166
composite shapes, 255 diameter, 168
parts of, 166, 254
radius, 168
coefficient 23
common factors, 21, 26
common multiple, 19
compound
measure, 178, 262
units, 178, 262
units, 178, 262
congruence, 198
criteria, 198
criteria, 198
constant, 23
constructions, 194
conversion
between measures, 135
between metric units, 137, 264
currency, 133, 135
graphs, 133
metric and imperial, 140
units of time, 139
coordinates, 64
correlation
negative, 234, 236
positive, 234, 236
strong, 236
cos, 221, 225, 226
cosine 221
cost price 1
cube 170
number, 14, 125
noot, 14
cuboid, 170
cylinder, 170

D

data
categorical, 144, 228 categorical, 144,228
collection sheet, 144 collection sheet, 144 discrete, 144, 150, 228 discrete, $1,14,150$
grouped, 150
decimal numbers
ascending, descending order, 33 calculating with, 35
divide, 41
multiply, 39
decimals
convert to fractions, 77
convert to percentage, 260
recurring, 260
terminating, 79, 260
denominator, 26, 53
density, 178, 262
depreciation, 272
descending order, 2
diameter, 166
difference 7 direct proportion, 142
distance 176
distance, $1 / 6$
distributions, 158
distributions, 158
divisibility tests, 16
division, 9
of negative numbers, 6

E

edge, 170
elevation
elevation
front, 47
side, 47
enlargements, 118, 120
equation, 27
forming, 27
of a straight line, $66,68,69,73,75$
solving, 27
equilateral triangle, 204
equivalent fraction, 58
error interval, 38, 42, 282
estimate
answer, 39, 41, 42
length, 42
event, 90
events
combined, 90, 247
dependent, 245
independent, 241
expand a bracket, 30
expression, $23,24,27$
factorise 30,206
simplify 30,206
exterior angle 112, 204
extrapolate 234

F

face, 170
factor tree, 18
factorisation theorem
unique, 18
factors. 16
factors, 16
Fibonacci sequence, 127
force, 262
formula, 27
rearrange, 29, 280
standard, 280
substitute into, 29
fractions, 23
add, 57
equivalen, 53
equivalent, 53
improper, 56
multiply, 60
proper, 56
simplify, 58
subtract. 57
subbract, 57
requency, 154
relative, 239
table, 147, 152, 228
tree, 93
machine, 24, 122
quadratic, 186
geometric proofs, 204
gradient, 71, 183
as rate of change, 266
interpret, 266
positive, 71
graph
cubic, 190
distance-time, 183
interpret, 183
quadratic, 188
real-life, 183
reciprocal, 190
catter, 234, 236
straight line, 68,
time series, 232
growth and decay, 27
H
HCF, 2
highest common factor, 21
household finance, 17
I
identities, 213, 214
identity symbol, 213
imperial measures, 140
improper fractions
add and subtract, 58
convert, 58
divide, 62
income tax, 175
index
fox
notation, 14, 15, 32
number, 14
index numbers
divide, 15
indices, laws of, 15, 32
inequalities, 129
inequalties,
solving linear, 131
inequality
notation, 4, 282
signs, 6
signs, 6
integers, 2
intercept, 188
interest, 173, 175, 270
rates, 173, 175
simple, 173, 175
interior angle, 112, 204 interpolation, 234 intersection of two sets, 243 inverse operations, 10 isometric drawings, 47 isosceles triangle, 204
kite, 16
L
LCM, 19, 21
like terms, 23, 26
collecting, 26
limit of accuracy, 282
line
of best fit, 234, 236
of symmetry, 188
linear equation
solving, 206, 208, 274
linear expression
squaring, 210
linear inequalities, 131
loci, 196
loss, 17
lowest common multiple. 1

M

$\underset{\text { scales, } 44}{ }$
map scales, 108 mass, 137
mean, 152, 154, 156, 158
median, 152, 154, 156, 158
metric measures, 13
mixed numbers, 56
add and subtract, 58
divide, 62
modal class, 154
mode 152, 156, 158
moultiples, 19
multiplication
non-calculator method, 7 of decimal numbers, 39 of negative numbers, 6

N

net, 171
number line, 2
0
order of operations, 10
original value problems, 87
outcome
of independent events, 98
probability of, 92
outcomes, 89
listing, 90
listing, 90
mutually exclusive, 97
entier 234
P
parabola, 186
parallelogram, 160
percentage, 81, 84
convert to decimal, 82
convert to fraction, 82
decrease, 87,272
perimeter
perimeter
of a 2 D shape, 48
of a circle, 166
of a sector, 254
pictogram, 144
pie chart, 147
place value, 2, 33, 35
plan view, 47
plane of symmetry, 171
plotting graphs, 68, 69
polygon, 112
population, 230
density, 178
position-to-term rule, 122
power, 14
negative, 15
pressure, 178, 262
prime number, 16
priority of operations, 10
prism, 170
probabity 93
experiments 93,95
experiments, 9 measuring. 89
of combined outcomes, 98, 249
theoretical, 92, 239
theoretic
\mathbf{S}
sample
of a population, 230
size, 239
space diagram, 90
scale
diagram, 44
ving, 4
factor, 118, 120, 200
scatter graph, 234, 236
sector, 254
segment, 166
selling price, 173
seting price, 173
semicircle, 168
sequence, 122, 125
arithmetic, 123
arithmetic, 123
Fibonacci, 127
geometric, 127
linear, 123
nth term, 123
quadratic, 128
significant figures, 38
similar shapes, 200
similarity, 118, 200
of 2-D shapes, 217
simple interest, 173, 270
simplest form, 53
simultaneous equations, 192, 276
interpreting solutions, 192
solving by substitution, 277
solving graphically, 192
sin, 221, 225, 226
sine, 221
solve
algebraic problems, 215
equations, 20
speed time graph. 266
speed time graph, 26
sphere, 170
square, 160
square, 160 square numbers, 12. 125
square root, 12, 14
standard form, 179, 181
standard units, 137
statistical diagrams, 228 statistics, 249
stem-and leaf diagrams, 156
substitution, 24
sum, 7
surd, 32
surface, 170
area, 256
symmetry, 171, 188, 204
systematic listing strategy, 90

T
tables, 150, 228, 247
tally chart, 144
$\tan , 221,225,226$
tangent, 221
term, 23
term-to-term rule, 122, 127
tessalations, 162
theoretical models, 92
time series graph, 232
transformations,
trapezium, 160
tree diagram, 241,245
triangle
equilateral, 112, 204
right-angled, 219, 221
triangular numbers, 125
trigonometric ratios, 219, 221, 223
truncated number, 42, 282
turning point, 188

U

union
of two sets, 243
unique factorisation theorem. 18
units
of area, 264
of capacity, 137, 264
of length, 137, 264
of mass, 137
of time, 139
of volume, 264
universal set symbol, 243

v

variable, 23
VAT, 175
vector, 251
column, 251, 253
components, 253
scalar multiple, 253
vectors
adding and subtracting, 251
parallel, 253
Venn diagram, 243, 247
vertex, 170
volume
of compound solids, 258
of cuboids and prisms, 51

Revision, re-imagined

the ClearRevise family expands

$$
\begin{gathered}
\text { New titles } \\
\text { coming soon! }
\end{gathered}
$$

These guides are everything you need to ace your exams and beam with pride. Each topic is laid out in a beautifully illustrated format that is clear, approachable and as concise and simple as possible.
They have been expertly compiled and edited by subject specialists, highly experienced examiners, industry professional and a good dollop of scientific research into what makes revision most effective. Past examinations questions are essential to good preparation, improving understanding and confidence.

- Hundreds of marks worth of examination style questions
- Answers provided for all questions within the books
- Illustrated topics to improve memory and recall
- Specification references for every topic
- Examination tips and techniques
- Free Python solutions pack (CS Only)

Absolute clarity is the aim.

Explore the series and add to your collection at www.clearrevise.com
Available from all good book shops.

[^0]: ao back and follow the instructions for checking your calculator is in the correct mode

